
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4372926/publications.pdf Version: 2024-02-01

So Nocuchi

#	Article	IF	CITATIONS
1	Microplastic Collection With Ultra-High Magnetic Field Magnet by Magnetic Separation. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	1
2	Experimental Study and Frequency Domain Analysis on Metal-Insulation HTS Coil. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	7
3	Mechanical Strength Evaluation of a Yoroi-Coil Structured Non-Circular REBCO Pancake Coil in High Magnetic Field. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	6
4	A newly developed screening current simulation method for REBCO pancake coils based on extension of PEEC model. Superconductor Science and Technology, 2022, 35, 044005.	3.5	15
5	Current Behaviors of NI REBCO Pancake Coil Wound With Multi-Bundled Conductors During Charging and Against Local Normal-State Transition. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	4
6	Numerical Evaluation of the Transient Thermal Stability of No-Insulation Pancake Coils Wound With a REBCO-Coated Conductor With Some Defects. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	1
7	Numerical Evaluation on Mechanical Behavior of No-Insulation REBCO Pancake Coils in Small-Scale Model of Skeleton Cyclotron. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	1
8	Numerical Evaluation of Screening Current-Induced Magnetic Field in REBCO Coil System for Skeleton Cyclotron Using a Full-Scale Model. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	1
9	Numerical Evaluation of Electromagnetic Behavior of Multi-Stacked No-Insulation REBCO Coil System for Whole-Body MRIs and Medical Cyclotrons. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	2
10	Numerical Evaluation of Transient Thermal Stability of No-Insulation REBCO Pancake Coils With a Noncontact Area Between Turns. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	4
11	An Optimal Configuration Method of Superconducting Magnet With Iron Shield Using Model Order Reduction. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	Ο
12	Numerical Evaluation on Quench Behavior of No-Insulation REBCO Coil System in Small-Scale Model of Skeleton Cyclotron. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	0
13	Plastic Deformation Simulation of REBCO Tapes Using Particle Methods. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	3
14	Experimental Study on the Accuracy of the Proposed LFAC Method for Measuring the Contact Resistance of NI HTS Coils. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	4
15	AC Loss Evaluation of NI REBCO Pancake Coils in External Low-Frequency Magnetic Field. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	4
16	Mechanical Damage Protection Method by Reducing Induced Current in NI REBCO Pancake Coils During Quench Propagation. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	5
17	Turn-to-Turn Contact Resistance Measurement of No-Insulation REBCO Pancake Coil: External Field Dependence. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	13
18	Sudden Discharging and Overcurrent Simulations of REBCO Coils Coated With Conductive Epoxy Resin. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	5

#	Article	IF	CITATIONS
19	Numerical Evaluation of Screening Current-Induced Magnetic Field in No-Insulation REBCO Coil Systems. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	3
20	Numerical Evaluation of Screening Current-Induced Magnetic Field Considering Variable Output Energy in REBCO Coil System of Skeleton Cyclotron for Cancer Therapy. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	4
21	Numerical Analysis of the Reduction of Screening-Current-Induced Magnetic Field in Copper-Plated and Striated REBCO-Coated Conductor Wound Into Pancake Coils. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	2
22	Evaluation Criterion for Determining Turn-to-Turn Contact Electrical Resistance Satisfying High Thermal Stability and Shortening Charging Delay in NI-REBCO Coils for MRIs. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	6
23	Investigation on Mechanical Damage of No-Insulation REBCO Pancake Coil by Multi-Physics Quench Simulation. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	6
24	Numerical Evaluation on Electromagnetic and Thermal Stresses in Non-Circular REBCO Pancake Coils of Multi-Coil System For Skeleton Cyclotron. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	3
25	Unbalanced radial current flow simulation of no-insulation REBCO pancake coils during normal state transition. Superconductor Science and Technology, 2020, 33, 104003.	3.5	2
26	A Feasibility Study on "Magnetic Dam―to Absorb Magnetic Energy in NI HTS Magnet During Quench. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	9
27	Influence of Coil Size and Operating Temperature on the Transient Stability of a Multi-Stacked No-Insulation REBCO Pancake Coil System. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	4
28	Turn-to-Turn Contact Resistance Measurement of No-Insulation REBCO Pancake Coil at DC Current Operation. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	11
29	A simple screening current simulation method using equivalent circuit model for REBCO pancake coils. Superconductor Science and Technology, 2020, 33, 115005.	3.5	7
30	Effectiveness of Filter Inductor of Rectifier Transformer Flux Pump in Energizing Multi-Stacked No-Insulation REBCO Pancake Coils. Journal of Physics: Conference Series, 2020, 1590, 012047.	0.4	2
31	Turn-to-Turn Contact Resistance Measurement of No-Insulation REBCO Pancake Coils. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	21
32	Experiments on the Effects of Local Normal Transitions in Multi-Stacked No-Insulation REBCO Pancake Coils. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	2
33	Quench Analyses of the MIT 1.3-GHz LTS/HTS NMR Magnet. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	25
34	Assembly and Test of a 3-Nested-Coil 800-MHz REBCO Insert (H800) for the MIT 1.3 GHz LTS/HTS NMR Magnet. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.7	58
35	Torque Simulation on NI REBCO Pancake Coils during Quench. Journal of Physics: Conference Series, 2019, 1293, 012061.	0.4	5
36	Combined Circuit Model to Simulate Post-Quench Behaviors of No-Insulation HTS Coil. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	22

#	Article	IF	CITATIONS
37	Electromagnetic, Thermal, and Mechanical Quench Simulation of NI REBCO Pancake Coils for High Magnetic Field Generation. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-7.	1.7	42
38	45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature, 2019, 570, 496-499.	27.8	432
39	Evaluation of Electromagnetic Behavior of No-Insulation REBCO Pancake Coil With Multiple Defects. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	12
40	Conceptual Design of Compact HTS Cyclotron for RI Production. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	23
41	A simple protection evaluation method for no-insulation REBCO pancake coils during local normal-state transition. Superconductor Science and Technology, 2019, 32, 045001.	3.5	19
42	A simple screening current-induced magnetic field estimation method for REBCO pancake coils. Superconductor Science and Technology, 2019, 32, 045007.	3.5	21
43	Numerical Simulation Techniques for No-Insulation REBCO Pancake Coils. TEION KOGAKU (Journal of) Tj ETQq1	l 0.784314 0.1	rgBT /Overl
44	Current Status of Numerical Simulation Techniques for High-Temperature Superconducting Application Equipment. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2019, 54, 89-96.	0.1	0
45	Electromagnetic and thermal simulation of stacked NI REBCO pancake coils after normal-state transition. International Journal of Applied Electromagnetics and Mechanics, 2019, 59, 181-189.	0.6	0
46	Numerical Evaluation of Reduction Methods for Screening Current-induced Magnetic Field in a REBCO Multiple Coil System for 9.4-T Whole-body MRIs. TEION KOGAKU (Journal of Cryogenics and) Tj ETQq0 0 0 rgBT /	Oværlock 1	0 0 f 50 377
47	An Adaptive FEM Based on Magnetic Field Conservation Applying to Ferromagnetic Problems. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	0
48	A Field-Shaking System to Reduce the Screening-Current-Induced Field in the 800-MHz HTS Insert of the MIT 1.3-GHz LTS/HTS NMR Magnet: A Small-Model Study. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	9
49	Simulation on Electrical Field Generation by Hall Effect in No-Insulation REBCO Pancake Coils. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	7
50	An Extended Thin Approximation Method to Simulate Screening Current Induced in REBCO Coils. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	6
51	Thermal and Electromagnetic Simulation of Multistacked No-Insulation REBCO Pancake Coils on Normal-State Transition by PEEC Method. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	25
52	Fast Computation Method of Magnetic Field Homogeneity for NMR/MRI REBCO Pancake Coils. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	1
53	Current Behavior Simulation in Stacked NI REBCO Pancake Coils During Local Normal-State Transition. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	6
54	Influence of the Turn-to-Turn Contact Electrical Resistance on the Thermal Stability in Meter-Class No-Insulation REBCO Pancake Coils During a Local Normal-State Transition. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	22

#	Article	IF	CITATIONS
55	A Computer Aided Education System Based on Augmented Reality by Immersion to 3-D Magnetic Field. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	25
56	Screening-Current-Induced Magnetic Field of Conduction-Cooled HTS Magnets Wound With REBCO-Coated Conductors. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	18
57	Numerical Evaluation on Irregular Field Generated by Screening Current in High-Field REBCO Coil for Whole-Body MRI. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	10
58	A New Adaptive Mesh Refinement Method in FEA Based on Magnetic Field Conservation at Elements Interfaces and Non-Conforming Mesh Refinement Technique. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	2
59	Progress in the Development of Conduction-Cooled REBCO Magnets for Ultrahigh-Field MRI Systems. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	18
60	Detection Method for a Local Normal-State Transition in a No-Insulation REBCO Pancake Coil. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-6.	1.7	4
61	Simulation of Screening Current Reduction Effect in REBCO Coils by External AC Magnetic Field. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	9
62	Numerical Investigation of Metal Insulation Technique on Turn-to-Turn Contact Resistance of REBCO Pancake Coils. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	17
63	Optimal configuration design of MRI REBCO magnet taking into account superconducting layer. , 2016, , .		3
64	Electromagnetic analysis on magnetic field and current distribution in high temperature superconducting thin tape in coil winding. , 2016, , .		1
65	A new adaptive mesh refinement method in FEA based on conservation of magnetic field at interface between two elements. , 2016, , .		0
66	A computer aided education system based on augmented reality by immersion to 3-D magnetic field. , 2016, , .		2
67	R&D Progress of HTS Magnet Project for Ultrahigh-field MRI. Physics Procedia, 2016, 81, 145-148.	1.2	1
68	Evaluation of Magnetic Field Distribution by Screening Current in Multiple REBCO Coils. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	11
69	Evaluation on Quench Protection for No-Insulation REBCO Pancake Coil. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	38
70	An accelerated computation method of Legendre polynomial coefficients for MRI REBCO magnet design. , 2016, , .		0
71	Design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. Superconductor Science and Technology, 2016, 29, 104001.	3.5	40
72	Investigation of Current Flow Between Turns of NI REBCO Pancake Coil by 2-D Finite-Element Method. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	15

#	Article	IF	CITATIONS
73	Experiment and Simulation of Impregnated No-Insulation REBCO Pancake Coil. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	13
74	Fast Magnetic Flux Line Allocation Algorithm for Interactive Visualization Using Magnetic Flux Line Existence Probability. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	0
75	Evaluation of magnetic field homogeneity of a conduction-cooled REBCO magnet with a room temperature bore of 200 mm. IEEE Transactions on Applied Superconductivity, 2016, , 1-1.	1.7	7
76	R&D Project on HTS Magnets for Ultrahigh-Field MRI Systems. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	39
77	Transient Behaviors of No-Insulation REBCO Pancake Coil During Local Normal-State Transition. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	45
78	Numerical Simulation on Magnetic Field Generated by Screening Current in 10-T-Class REBCO Coil. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	54
79	Evaluation of Irregular Magnetic Field Generated by Screening Current in REBCO Coils for High Accuracy Field. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	8
80	Rational Design Optimization Method for Reducing Cost and Improving Performance of Commonalized IPM Motors. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	4
81	Numerical Simulation of DC SQUID Taking Into Account Quantum Characteristic of Josephson Junction. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	5
82	Active Shimming for the Entire Components of Magnetic Field Using Tilted Ellipsoidal Correction Coils. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	5
83	A 1.5-T Magic-Angle Spinning NMR Magnet: 4.2-K Performance and Field Mapping Test Results. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	3
84	Classification and Size Estimation of Wafer Defects by Using Scattered Light Distribution. Electronics and Communications in Japan, 2015, 98, 36-43.	0.5	3
85	Analyses of Transient Behaviors of No-Insulation REBCO Pancake Coils During Sudden Discharging and Overcurrent. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-9.	1.7	145
86	Project Overview of HTS Magnet for Ultra-high-field MRI System. Physics Procedia, 2015, 65, 217-220.	1.2	15
87	Numerical Electromagnetic Simulation of Effective Partial-insulation NbTi Superconducting Coil. Physics Procedia, 2015, 65, 233-236.	1.2	3
88	Charging Behavior in No-Insulation REBCO Pancake Coils. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	33
89	Acceleration of Dynamic Bubble Mesh Generation for Large-Scale Model. IEEE Transactions on Magnetics, 2014, 50, 453-456.	2.1	2
90	Passive Shimming by Eliminating Spherical Harmonics Coefficients of all Magnetic Field Components Generated by Correction Iron Pieces. IEEE Transactions on Magnetics, 2014, 50, 605-608.	2.1	7

#	Article	IF	CITATIONS
91	Meaning of the Rational Solution Obtained by Game Theory in a Multi-Objective Electromagnetic Apparatus Design Problem. IEEE Transactions on Magnetics, 2014, 50, 649-652.	2.1	3
92	Numerical Simulation of Superconducting Coil Wound With No-Insulation NbTi Wire. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	22
93	Measurement and Simulation of Magnetic Field Generated by Screening Currents in HTS Coil. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	48
94	Passive Shimming for Magic-Angle-Spinning NMR. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	7
95	Overturning Force Simulation on Normal-State Transition of Toroidal HTS-SMES Taking Into Account an Electromagnetic and Thermal Condition. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	0
96	Numerical Simulation of SQUID Magnetometer Considering Equivalent Electrical Circuit of Josephson Junction. Physics Procedia, 2014, 58, 200-203.	1.2	4
97	Formulation of the spherical harmonic coefficients of the entire magnetic field components generated by magnetic moment and current for shimming. Journal of Applied Physics, 2014, 115, .	2.5	15
98	The Parallelized Automatic Mesh Generation Using Dynamic Bubble System With GPGPU. IEEE Transactions on Magnetics, 2013, 49, 1677-1680.	2.1	3
99	Real Time Simulation Method of Magnetic Field for Visualization System With Augmented Reality Technology. IEEE Transactions on Magnetics, 2013, 49, 1665-1668.	2.1	25
100	A New Mesh Smoothing Method to Improve the Condition Number of Submatrices of Coefficient Matrix in Edge Finite Element Method. IEEE Transactions on Magnetics, 2013, 49, 1705-1708.	2.1	1
101	Conceptual Design of Next Generation HTS Cyclotron. IEEE Transactions on Applied Superconductivity, 2013, 23, 4100205-4100205.	1.7	43
102	Spatial and Temporal Behavior of Magnetic Field Distribution Due to Shielding Current in HTS Coil for Cyclotron Application. IEEE Transactions on Applied Superconductivity, 2013, 23, 4100805-4100805.	1.7	41
103	Numerical simulation of screening current distribution in HTS tape of high field magnet. Physica C: Superconductivity and Its Applications, 2013, 484, 300-304.	1.2	12
104	Comparison of Optimal Configuration of SMES Magnet Wound With \$hbox{MgB}_{2}\$ and YBCO Conductors. IEEE Transactions on Applied Superconductivity, 2013, 23, 5700204-5700204.	1.7	8
105	Clarification of the rational solution obtained from game theory in multipurposed optimisation problem. International Journal of Applied Electromagnetics and Mechanics, 2013, 43, 3-11.	0.6	0
106	Normal Transition Simulation on Toroidal HTS-SMES Considering Electromagnetic and Thermal Characteristics. IEEE Transactions on Applied Superconductivity, 2013, 23, 4700505-4700505.	1.7	3
107	Screening Current Simulation Inside YBCO Tape in Charging YBCO Magnet. IEEE Transactions on Applied Superconductivity, 2013, 23, 4600905-4600905.	1.7	9
108	Classification and Size Estimation of Wafer Defects by Using Scattered Light Distribution. IEEJ Transactions on Electronics, Information and Systems, 2013, 133, 2118-2124.	0.2	0

#	Article	IF	CITATIONS
109	Simulation of Chain of Quenches on Toroidal HTS-SMES Taking Account of \$B-J-heta\$ Characteristics. IEEE Transactions on Applied Superconductivity, 2012, 22, 4701604-4701604.	1.7	5
110	Overturning Force Simulation on Chain of Quenches of Toroidal HTS-SMES. IEEE Transactions on Applied Superconductivity, 2012, 22, 4701904-4701904.	1.7	6
111	Magnetic Shielding Simulation of Superconducting Film Magnetic Shield Covering Directly Coupled HTS dc-SQUID Magnetometer. Physics Procedia, 2012, 36, 138-143.	1.2	3
112	Magnetic Field and Fluid Flow Computation of Plural Kinds of Magnetic Particles for Magnetic Separation. IEEE Transactions on Magnetics, 2012, 48, 523-526.	2.1	7
113	Real-Time Visualization System of Magnetic Field Utilizing Augmented Reality Technology for Education. IEEE Transactions on Magnetics, 2012, 48, 531-534.	2.1	68
114	Characteristic Analysis of Directly Coupled HTS dc-SQUID Magnetometer With Superconducting Film Magnetic-Shield Considering Josephson-Junction Resistance. IEEE Transactions on Magnetics, 2012, 48, 571-574.	2.1	6
115	Adaptive Mesh Generation Method Utilizing Magnetic Flux Lines in Two-Dimensional Finite Element Analysis. IEEE Transactions on Magnetics, 2012, 48, 527-530.	2.1	17
116	A New Acceleration Factor Decision Method for ICCG Method Based on Condition Number. IEEE Transactions on Magnetics, 2012, 48, 519-522.	2.1	4
117	Numerical Simulation and Experimental Verification for Rice Using Distinct Element Method. Communications in Computer and Information Science, 2012, , 472-479.	0.5	2
118	Development of a Numerical Simulation Method for the Magnetic Separation of Magnetic Particles. IEEE Transactions on Magnetics, 2011, 47, 898-901.	2.1	6
119	Semi-Three-Dimensional Visualization of Electromagnetic Field Analysis Result With Volumetric Display. IEEE Transactions on Magnetics, 2011, 47, 1330-1333.	2.1	5
120	Simulation of Magnetic Fluid to Develop the Magnetic Chromatography for Magnetic Particle Separation. IEEE Transactions on Magnetics, 2011, 47, 3947-3950.	2.1	4
121	Investigation on Novel Magnetic Chromatography With Ferromagnetic Nano-Wires for Ion Separation. IEEE Transactions on Applied Superconductivity, 2011, 21, 2068-2071.	1.7	4
122	An Optimal Configuration Design of Superconducting Magnets for DC Reactor Taking Loss into Account. IEEE Transactions on Applied Superconductivity, 2011, 21, 2279-2282.	1.7	2
123	Influence of Magnetic Property of Ferromagnetic Shield on High Field Magnet Analysis. IEEE Transactions on Applied Superconductivity, 2011, 21, 2088-2091.	1.7	8
124	Development of Numerical Analysis Method for Magnetic Separation of Magnetic Particle and Ion With Magnetic Chromatography. IEEE Transactions on Applied Superconductivity, 2010, 20, 961-964.	1.7	4
125	Evaluation of Hexahedral Mesh Quality for Finite Element Method in Electromagnetics. Materials Science Forum, 2010, 670, 318-324.	0.3	2
126	An Optimal Configuration Design of Superconducting Magnets With HTS Tapes for DC Reactor. IEEE Transactions on Applied Superconductivity, 2010, 20, 1814-1817.	1.7	5

#	Article	lF	CITATIONS
127	Development of numerical simulation method for magnetic separation of magnetic particles. , 2010, , .		2
128	New smoothing method in the automatic hexahedral mesh generator for improving solver convergence property. , 2010, , .		0
129	Semi-three-dimensional visualization of electromagnetic field analysis results with volumetric display. , 2010, , .		0
130	Characteristics of Magnetic Separation for Magnetic Particle and Ion by Magnetic Chromatography With Novel Magnetic Column. IEEE Transactions on Applied Superconductivity, 2009, 19, 2152-2156.	1.7	8
131	Flexible Control of Multimaterial Tetrahedral Mesh Properties by Using Multiresolution Techniques. IEEE Transactions on Magnetics, 2009, 45, 1352-1355.	2.1	6
132	Selection of an Optimal Solution for Multiobjective Electromagnetic Apparatus Design Based on Game Theory. IEEE Transactions on Magnetics, 2008, 44, 1026-1029.	2.1	13
133	An Optimal Configuration Design Method for HTS-SMES Coils Taking Account of Thermal and Electromagnetic Characteristics. IEEE Transactions on Applied Superconductivity, 2008, 18, 762-765.	1.7	17
134	Asymmetrical Normal Zone Propagation Analysis Considering Hall Effect for Large Aluminum Stabilized Superconductor. IEEE Transactions on Applied Superconductivity, 2007, 17, 2490-2493.	1.7	3
135	Operating Property Analysis of Parallelized Resistive Fault Current Limiter Using YBCO Thin Films. IEEE Transactions on Applied Superconductivity, 2007, 17, 1835-1838.	1.7	4
136	An Adaptive Mesh Generation With Parameterized Learning. IEEJ Transactions on Industry Applications, 2007, 127, 293-299.	0.2	0
137	A new analysis method for accurate supercurrent distribution inside HTS bulk. Journal of Materials Processing Technology, 2007, 181, 31-35.	6.3	1
138	An Automatic Hexahedral Mesh Generation to Control Shape of Elements. IEEE Transactions on Magnetics, 2007, 43, 1505-1508.	2.1	2
139	Transient stability analysis of large aluminum stabilized superconductor by 3D finite element method. Journal of Materials Processing Technology, 2005, 161, 10-15.	6.3	1
140	An automatic hexahedral mesh generation method for hexahedral elements towards rotating machine. Journal of Materials Processing Technology, 2005, 161, 101-106.	6.3	2
141	An automatic hexahedral mesh generation for high-quality mesh by deformation and tree structure. IEEE Transactions on Magnetics, 2005, 41, 1664-1667.	2.1	1
142	A new interactive visualization system with force feedback for electromagnetics education. International Journal of Applied Electromagnetics and Mechanics, 2004, 19, 385-390.	0.6	2
143	An optimization method for design of PM motor by using Voltage Driven Finite Element Method and genetic algorithm. International Journal of Applied Electromagnetics and Mechanics, 2004, 19, 433-436.	0.6	2
144	Automatic Hexahedral Mesh Generation for Rotating Machine. IEEE Transactions on Magnetics, 2004, 40, 973-976.	2.1	4

#	Article	IF	CITATIONS
145	A New Interactive Visualization System With Force Feedback Device in 3-D Electromagnetics. IEEE Transactions on Magnetics, 2004, 40, 1382-1385.	2.1	4
146	An optimization method for design of SMES coils using YBCO tape. IEEE Transactions on Applied Superconductivity, 2003, 13, 1856-1859.	1.7	35
147	Development of a tracking and steering system in a network environment. IEEE Transactions on Magnetics, 2003, 39, 1646-1649.	2.1	0
148	Fast 3-D edge element analysis by the geometric multigrid method using an accelerated symmetric gauss-seidel smoother. IEEE Transactions on Magnetics, 2003, 39, 1685-1688.	2.1	1
149	A Method to Determine Supply Voltage of Permanent Magnet Motor at Optimal Design Stage. IEEJ Transactions on Industry Applications, 2003, 123, 364-370.	0.2	1
150	Enhancing the Speed of the 3D Finite Element Analysis by the Geometric Multigrid Method with Edge Elements. IEEJ Transactions on Industry Applications, 2003, 123, 1169-1175.	0.2	0
151	Automatic hexahedral mesh generation for FEM using shape recognition technique and tree method [EM field analysis]. IEEE Transactions on Magnetics, 2002, 38, 417-420.	2.1	11
152	A new interpolation method for interactive visualization system. International Journal of Applied Electromagnetics and Mechanics, 2002, 15, 417-422.	0.6	1
153	An optimal design method for efficiency of permanent magnet motors. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2002, 138, 72-79.	0.4	3
154	Fundamental characteristic estimation based on finite element method for magnetic shielding type superconducting fault current limiter. Electrical Engineering in Japan (English Translation of Denki) Tj ETQq0 0 0 r	g BT. 40ver	lo c k 10 Tf 50
155	Automatic quadrilateral mesh generation for FEM using dynamic bubble system. IEEE Transactions on Magnetics, 2001, 37, 3522-3525.	2.1	8
156	An Optimal Design Method for Efficiency of Permanent Magnet Motors. IEEJ Transactions on Industry Applications, 2001, 121, 171-177.	0.2	8
157	Interactive visualization system for education and design in electromagnetics. IEEE Transactions on Magnetics, 2000, 36, 995-999.	2.1	10
158	Fast multigrid solution method for nested edge-based finite element meshes. IEEE Transactions on Magnetics, 2000, 36, 1539-1542.	2.1	8
159	"Electromaglev―("active-maglevâ€) – magnetic levitation of a superconducting disk with a DC field generated by electromagnets. Part 4: theoretical and experimental results on supercurrent distributions in field-cooled YBCO disks. Cryogenics, 1999, 39, 893-903.	1.7	21
160	An Automatic Hexahedral Mesh Generation to Control Shape of Elements. , 0, , .		0
161	A Technique for Selecting An Optimal Solution from among Pareto-optima of Multi-purposed Electromagnetic Apparatus Design based on Game Theory. , 0, , .		1
162	Stability of Toroidal SMES Using YBCO Tapes for Simultaneous Quench of a few Coils. Materials Science Forum, 0, 670, 3-10.	0.3	1