List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4372335/publications.pdf Version: 2024-02-01

Пімішні і Пі

#	Article	IF	CITATIONS
1	H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet, The, 2007, 370, 1137-1145.	13.7	328
2	Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 548-553.	7.1	287
3	Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17204-17210.	7.1	195
4	H9N2 influenza virus in China: a cause of concern. Protein and Cell, 2015, 6, 18-25.	11.0	182
5	High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4164-4169.	7.1	158
6	Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008. Veterinary Microbiology, 2010, 146, 215-225.	1.9	134
7	H5N1 avian influenza re-emergence of Lake Qinghai: phylogenetic and antigenic analyses of the newly isolated viruses and roles of migratory birds in virus circulation. Journal of General Virology, 2008, 89, 697-702.	2.9	100
8	Natural and experimental infection of dogs with pandemic H1N1/2009 influenza virus. Journal of General Virology, 2012, 93, 119-123.	2.9	72
9	Assessment of the Internal Genes of Influenza A (H7N9) Virus Contributing to High Pathogenicity in Mice. Journal of Virology, 2015, 89, 2-13.	3.4	71
10	Amino Acid 316 of Hemagglutinin and the Neuraminidase Stalk Length Influence Virulence of H9N2 Influenza Virus in Chickens and Mice. Journal of Virology, 2013, 87, 2963-2968.	3.4	70
11	The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses. Scientific Reports, 2015, 5, 8262.	3.3	69
12	Characterization of clade 2.3.4.4 highly pathogenic H5 avian influenza viruses in ducks and chickens. Veterinary Microbiology, 2016, 182, 116-122.	1.9	69
13	Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity. Journal of Virology, 2016, 90, 8105-8114.	3.4	68
14	Mouse-Adapted H9N2 Influenza A Virus PB2 Protein M147L and E627K Mutations Are Critical for High Virulence. PLoS ONE, 2012, 7, e40752.	2.5	65
15	Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets. Journal of Virology, 2016, 90, 6235-6243.	3.4	64
16	IFI16 directly senses viral RNA and enhances RIG-I transcription and activation to restrict influenza virus infection. Nature Microbiology, 2021, 6, 932-945.	13.3	61
17	PA-X is a virulence factor in avian H9N2 influenza virus. Journal of General Virology, 2015, 96, 2587-2594.	2.9	57
18	Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013. Emerging Microbes and Infections, 2017, 6, 1-11.	6.5	56

#	Article	IF	CITATIONS
19	Twenty amino acids at the C-terminus of PA-X are associated with increased influenza A virus replication and pathogenicity. Journal of General Virology, 2015, 96, 2036-2049.	2.9	54
20	Evaluation of the protective efficacy of a commercial vaccine against different antigenic groups of H9N2 influenza viruses in chickens. Veterinary Microbiology, 2012, 156, 193-199.	1.9	53
21	A Single Amino Acid at the Hemagglutinin Cleavage Site Contributes to the Pathogenicity and Neurovirulence of H5N1 Influenza Virus in Mice. Journal of Virology, 2012, 86, 6924-6931.	3.4	51
22	H9N2 influenza viruses prevalent in poultry in China are phylogenetically distinct from A/quail/Hong Kongl/G1/97 presumed to be the donor of the internal protein genes of the H5N1 Hong Kong/97 virus. Avian Pathology, 2003, 32, 551-560.	2.0	42
23	Risk Perceptions for Avian Influenza Virus Infection among Poultry Workers, China. Emerging Infectious Diseases, 2013, 19, 313-316.	4.3	41
24	M Gene Reassortment in H9N2 Influenza Virus Promotes Early Infection and Replication: Contribution to Rising Virus Prevalence in Chickens in China. Journal of Virology, 2017, 91, .	3.4	41
25	Antigenic evolution of H9N2 chicken influenza viruses isolated in China during 2009–2013 and selection of a candidate vaccine strain with broad cross-reactivity. Veterinary Microbiology, 2016, 182, 1-7.	1.9	37
26	Naturally Occurring Mutations in the PA Gene Are Key Contributors to Increased Virulence of Pandemic H1N1/09 Influenza Virus in Mice. Journal of Virology, 2014, 88, 4600-4604.	3.4	36
27	Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health. Microbial Pathogenesis, 2015, 89, 62-72.	2.9	33
28	Thapsigargin Is a Broad-Spectrum Inhibitor of Major Human Respiratory Viruses: Coronavirus, Respiratory Syncytial Virus and Influenza A Virus. Viruses, 2021, 13, 234.	3.3	33
29	A serological survey of canine H3N2, pandemic H1N1/09 and human seasonal H3N2 influenza viruses in dogs in China. Veterinary Microbiology, 2014, 168, 193-196.	1.9	32
30	Recombinant turkey herpesvirus expressing H9 hemagglutinin providing protection against H9N2 avian influenza. Virology, 2019, 529, 7-15.	2.4	30
31	An R195K Mutation in the PA-X Protein Increases the Virulence and Transmission of Influenza A Virus in Mammalian Hosts. Journal of Virology, 2020, 94, .	3.4	30
32	Molecular Mechanisms for the Adaptive Switching Between the OAS/RNase L and OASL/RIG-I Pathways in Birds and Mammals. Frontiers in Immunology, 2018, 9, 1398.	4.8	29
33	Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus. Nature Communications, 2015, 6, 5600.	12.8	28
34	Reassortment with Dominant Chicken H9N2 Influenza Virus Contributed to the Fifth H7N9 Virus Human Epidemic. Journal of Virology, 2021, 95, .	3.4	27
35	Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-β induction in human cells. Journal of General Virology, 2019, 100, 1273-1281.	2.9	27
36	Induction of PGRN by influenza virus inhibits the antiviral immune responses through downregulation of type I interferons signaling. PLoS Pathogens, 2019, 15, e1008062.	4.7	25

#	Article	IF	CITATIONS
37	Risk Perceptions for Avian Influenza Virus Infection among Poultry Workers, China. Emerging Infectious Diseases, 2013, 19, 313-316.	4.3	25
38	Influenza A Virus Acquires Enhanced Pathogenicity and Transmissibility after Serial Passages in Swine. Journal of Virology, 2014, 88, 11981-11994.	3.4	24
39	Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation. Scientific Reports, 2016, 5, 17999.	3.3	22
40	Mink is a highly susceptible host species to circulating human and avian influenza viruses. Emerging Microbes and Infections, 2021, 10, 472-480.	6.5	22
41	PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine. Virology, 2017, 508, 45-53.	2.4	21
42	Cryptoporus volvatus Extract Inhibits Influenza Virus Replication In Vitro and In Vivo. PLoS ONE, 2014, 9, e113604.	2.5	20
43	Identification and analysis of long non-coding RNAs in response to H5N1 influenza viruses in duck (Anas platyrhynchos). BMC Genomics, 2019, 20, 36.	2.8	20
44	Emerging Role of Mucosal Vaccine in Preventing Infection with Avian Influenza A Viruses. Viruses, 2020, 12, 862.	3.3	20
45	Enhanced pathogenicity and neurotropism of mouse-adapted H10N7 influenza virus are mediated by novel PB2 and NA mutations. Journal of General Virology, 2017, 98, 1185-1195.	2.9	20
46	Epidemic Status of Swine Influenza Virus in China. Indian Journal of Microbiology, 2014, 54, 3-11.	2.7	19
47	Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs. Scientific Reports, 2016, 6, 21845.	3.3	18
48	Thapsigargin at Non-Cytotoxic Levels Induces a Potent Host Antiviral Response that Blocks Influenza A Virus Replication. Viruses, 2020, 12, 1093.	3.3	18
49	C-terminal elongation of NS1 of H9N2 influenza virus induces a high level of inflammatory cytokines and increases transmission. Journal of General Virology, 2015, 96, 259-268.	2.9	16
50	Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine. Scientific Reports, 2016, 6, 30382.	3.3	15
51	Differential nucleocytoplasmic shuttling of the nucleoprotein of influenza a viruses and association with host tropism. Cellular Microbiology, 2017, 19, e12692.	2.1	15
52	Characterization of an Artificial Swine-Origin Influenza Virus with the Same Gene Combination as H1N1/2009 Virus: A Genesis Clue of Pandemic Strain. PLoS ONE, 2011, 6, e22091.	2.5	14
53	Broad-spectrum antiviral functions of duck interferon-induced protein with tetratricopeptide repeats (AvIFIT). Developmental and Comparative Immunology, 2018, 84, 71-81.	2.3	13
54	Transmission and pathogenicity of novel reassortants derived from Eurasian avian-like and 2009 pandemic H1N1 influenza viruses in mice and guinea pigs. Scientific Reports, 2016, 6, 27067.	3.3	12

#	Article	IF	CITATIONS
55	Structure-Based Modification of an Anti-neuraminidase Human Antibody Restores Protection Efficacy against the Drifted Influenza Virus. MBio, 2020, 11, .	4.1	12
56	p21 restricts influenza A virus by perturbing the viral polymerase complex and upregulating type I interferon signaling. PLoS Pathogens, 2022, 18, e1010295.	4.7	12
57	Serological survey of canine H3N2, pandemic H1N1/09, and human seasonal H3N2 influenza viruses in cats in northern China, 2010–2014. Virology Journal, 2015, 12, 50.	3.4	11
58	Mouse-adapted H9N2 avian influenza virus causes systemic infection in mice. Virology Journal, 2019, 16, 135.	3.4	11
59	The infection of turkeys and chickens by reassortants derived from pandemic H1N1 2009 and avian H9N2 influenza viruses. Scientific Reports, 2015, 5, 10130.	3.3	10
60	The matrix gene of pdm/09 H1N1 contributes to the pathogenicity and transmissibility of SIV in mammals. Veterinary Microbiology, 2021, 255, 109039.	1.9	10
61	H9N2 virus-derived M1 protein promotes H5N6 virus release in mammalian cells: Mechanism of avian influenza virus inter-species infection in humans. PLoS Pathogens, 2021, 17, e1010098.	4.7	10
62	Hemagglutinin mutation D222N of the 2009 pandemic H1N1 influenza virus alters receptor specificity without affecting virulence in mice. Virus Research, 2014, 189, 79-86.	2.2	9
63	Cross- immunity of a H9N2 live attenuated influenza vaccine against H5N2 highly pathogenic avian influenza virus in chickens. Veterinary Microbiology, 2018, 220, 57-66.	1.9	9
64	Swine MicroRNAs <i>ssc-miR-221-3p</i> and <i>ssc-miR-222</i> Restrict the Cross-Species Infection of Avian Influenza Virus. Journal of Virology, 2020, 94, .	3.4	9
65	A Multiplex RT-PCR Assay for Detection and Differentiation of Avian-Origin Canine H3N2, Equine-Origin H3N8, Human-Origin H3N2, and H1N1/2009 Canine Influenza Viruses. PLoS ONE, 2017, 12, e0170374.	2.5	8
66	Truncation of PA-X Contributes to Virulence and Transmission of H3N8 and H3N2 Canine Influenza Viruses in Dogs. Journal of Virology, 2020, 94, .	3.4	8
67	Mutations in PB2 and HA are crucial for the increased virulence and transmissibility of H1N1 swine influenza virus in mammalian models. Veterinary Microbiology, 2022, 265, 109314.	1.9	7
68	Limited onward transmission potential of reassortment genotypes from chickens co-infected with H9N2 and H7N9 avian influenza viruses. Emerging Microbes and Infections, 2021, 10, 2030-2041.	6.5	6
69	N-linked glycosylation enhances hemagglutinin stability in avian H5N6 influenza virus to promote adaptation in mammals. , 2022, 1, .		6
70	Pathogenicity of novel reassortant Eurasian avian-like H1N1 influenza virus in pigs. Virology, 2021, 561, 28-35.	2.4	5
71	A D200N hemagglutinin substitution contributes to antigenic changes and increased replication of avian H9N2 influenza virus. Veterinary Microbiology, 2020, 245, 108669.	1.9	3
72	Neurovirulence of Avian Influenza Virus Is Dependent on the Interaction of Viral NP Protein with FMRP in the Murine Brain. Journal of Virology, 2021, 95, .	3.4	2

#	Article	IF	CITATIONS
73	Isolation and characterization of H4N6 avian influenza viruses from mallard ducks in Beijing, China. PLoS ONE, 2017, 12, e0184437.	2.5	2
74	Functional divergence of oligoadenylate synthetase 1 (OAS1) proteins in Tetrapods. Science China Life Sciences, 2022, 65, 1395-1412.	4.9	2
75	The use of pyrosequencing for detection of hemagglutinin mutations associated with increased pathogenicity of H5N1 avian influenza viruses in mammals. Journal of Veterinary Diagnostic Investigation, 2018, 30, 619-622.	1.1	1
76	Recombinant HA1-ΔfliC enhances adherence to respiratory epithelial cells and promotes the superiorly protective immune responses against H9N2 influenza virus in chickens. Veterinary Microbiology, 2021, 262, 109238.	1.9	1
77	H3N2 canine influenza virus and Enterococcus faecalis coinfection in dogs in China. BMC Veterinary Research, 2019, 15, 113.	1.9	0