Alan H Schulman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4371603/publications.pdf

Version: 2024-02-01

31976 17105 16,391 130 53 122 citations g-index h-index papers 139 139 139 14502 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic regions associated with chocolate spot (Botrytis fabae Sard.) resistance in faba bean (Vicia) Tj ETQq $1\ 1$	0.784314	rgBT /Ove <mark>rlo</mark>
2	Transposon-Based Tagging In Silico Using FastPCR Software. Methods in Molecular Biology, 2021, 2250, 245-256.	0.9	4
3	Recent advances in faba bean genetic and genomic tools for crop improvement. , 2021, 3, e75.		38
4	Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics, 2021, 53, 564-573.	21.4	138
5	Palindromic Sequence-Targeted (PST) PCR, Version 2: An Advanced Method for High-Throughput Targeted Gene Characterization and Transposon Display. Frontiers in Plant Science, 2021, 12, 691940.	3.6	11
6	VC1 catalyses a key step in the biosynthesis of vicine in faba bean. Nature Plants, 2021, 7, 923-931.	9.3	34
7	European Court of Justice delivers no justice to Europe on genomeâ€edited crops. Plant Biotechnology Journal, 2020, 18, 8-10.	8.3	31
8	Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models. Agricultural and Forest Meteorology, 2020, 281, 107851.	4.8	35
9	Immunochemical analysis of oat avenins in an oat cultivar and landrace collection. Journal of Cereal Science, 2020, 95, 103053.	3.7	11
10	High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis. Molecular Biology Reports, 2020, 47, 1589-1603.	2.3	16
11	The impact of GM crops on agriculture. , 2020, , 195-213.		5
12	Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants. International Journal of Molecular Sciences, 2020, 21, 2931.	4.1	27
13	Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage. Trends in Food Science and Technology, 2019, 91, 549-556.	15.1	84
14	Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism. Current Biology, 2019, 29, 3041-3052.e4.	3.9	109
15	The genome of cowpea (<i>Vigna unguiculata</i> [L.] Walp.). Plant Journal, 2019, 98, 767-782.	5.7	264
16	Microsatellite Diversity, Complexity, and Host Range of Mycobacteriophage Genomes of the Siphoviridae Family. Frontiers in Genetics, 2019, 10, 207.	2.3	17
17	Palindromic sequence-targeted (PST) PCR: a rapid and efficient method for high-throughput gene characterization and genome walking. Scientific Reports, 2019, 9, 17707.	3.3	21
18	TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biology, 2019, 20, 284.	8.8	179

#	Article	IF	Citations
19	Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology, 2018, 24, 1291-1307.	9.5	149
20	Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Communications, 2018, 9, 3735.	12.8	204
21	Retrotransposon-Based Genetic Diversity Assessment in Wild Emmer Wheat (Triticum turgidum ssp.) Tj ETQq1 1	0.784314 3.0	f rgBT /Overlo
22	The Repetitive Landscape of the Barley Genome. Compendium of Plant Genomes, 2018, , 123-138.	0.5	6
23	The pseudogenes of barley. Plant Journal, 2018, 93, 502-514.	5.7	14
24	Copy-number variation of housekeeping gene rpl13a in rat strains selected for nervous system excitability. Molecular and Cellular Probes, 2017, 33, 11-15.	2.1	5
25	Gene Deletion in Barley Mediated by LTR-retrotransposon BARE. Scientific Reports, 2017, 7, 43766.	3.3	13
26	Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics, 2017, 49, 904-912.	21.4	221
27	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	27.8	1,365
28	Construction of a map-based reference genome sequence for barley, Hordeum vulgare L Scientific Data, 2017, 4, 170044.	5. 3	130
29	Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy, 2017, 82, 144-162.	4.1	84
30	The repetitive landscape of the 5100 Mbp barley genome. Mobile DNA, 2017, 8, 22.	3.6	49
31	Assessment of genetic diversity in Nordic timothy (Phleum pratense L.). Hereditas, 2016, 153, 5.	1.4	6
32	Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, 2016, , .	0.3	22
33	Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Molecular Breeding, 2015, 35, 1.	2.1	74
34	Genome Size and the Role of Transposable Elements. Plant Genetics and Genomics: Crops and Models, 2015, , 81-106.	0.3	3
35	Retrotransposon molecular markers resolve cocoyam (Xanthosoma sagittifolium) and taro (Colocasia esculenta) by type and variety. Euphytica, 2015, 206, 541-554.	1.2	25
36	Development of IRAP- and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. Theoretical and Applied Genetics, 2015, 128, 211-219.	3.6	35

#	Article	IF	Citations
37	Analysis of CACTA transposases reveals intron loss as major factor influencing their exon/intron structure in monocotyledonous and eudicotyledonous hosts. Mobile DNA, 2014, 5, 24.	3.6	10
38	The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature Communications, 2014, 5, 4737.	12.8	196
39	FastPCR Software for PCR, In Silico PCR, and Oligonucleotide Assembly and Analysis. Methods in Molecular Biology, 2014, 1116, 271-302.	0.9	73
40	The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years. Theoretical and Applied Genetics, 2014, 127, 1223-1235.	3.6	21
41	Transposon-Based Tagging: IRAP, REMAP, and iPBS. Methods in Molecular Biology, 2014, 1115, 233-255.	0.9	52
42	Retrotransposon replication in plants. Current Opinion in Virology, 2013, 3, 604-614.	5.4	53
43	Anchoring and ordering <scp>NGS</scp> contig assemblies by population sequencing (<scp>POPSEQ</scp>). Plant Journal, 2013, 76, 718-727.	5.7	264
44	Retrotransposon <i><scp>BARE</scp></i> displays strong tissueâ€specific differences in expression. New Phytologist, 2013, 200, 1000-1008.	7.3	16
45	Detection of genetic relationships among spring and winter triticale (× Triticosecale Witt.) and rye cultivars (Secale cereale L.) by using retrotransposon-based markers. Czech Journal of Genetics and Plant Breeding, 2013, 49, 171-174.	0.8	8
46	Structural and Temporal Variation in Genetic Diversity of European Spring Twoâ€Row Barley Cultivars and Association Mapping of Quantitative Traits. Plant Genome, 2013, 6, plantgenome2013.03.0007.	2.8	95
47	BARE Retrotransposons Are Translated and Replicated via Distinct RNA Pools. PLoS ONE, 2013, 8, e72270.	2.5	25
48	Integrating cereal genomics to support innovation in the Triticeae. Functional and Integrative Genomics, 2012, 12, 573-583.	3.5	39
49	A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491, 711-716.	27.8	1,416
50	Hitching a Ride: Nonautonomous Retrotransposons and Parasitism as a Lifestyle. Topics in Current Genetics, 2012, , 71-88.	0.7	10
51	Differential effects of mild chronic stress on cortisol and S-IgA responses to an acute stressor. Biological Psychology, 2012, 91, 307-311.	2.2	27
52	The Application of LTR Retrotransposons as Molecular Markers in Plants. Methods in Molecular Biology, 2012, 859, 115-153.	0.9	58
53	Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (<i>Triticum) Tj ETQq1 1 0.784 Pathology, 2012, 13, 276-287.</i>	1314 rgBT 4.2	Overlock 10 45
54	Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics, 2011, 98, 137-144.	2.9	146

#	Article	IF	Citations
55	Analysis of plant diversity with retrotransposon-based molecular markers. Heredity, 2011, 106, 520-530.	2.6	213
56	Rapid linkage disequilibrium decay in the Lr10 gene in wild emmer wheat (Triticum dicoccoides) populations. Theoretical and Applied Genetics, 2011, 122, 175-187.	3 . 6	17
57	Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theoretical and Applied Genetics, 2011, 122, 1385-1397.	3.6	127
58	A doubled haploid rye linkage map with a QTL affecting \hat{l}_{\pm} -amylase activity. Journal of Applied Genetics, 2011, 52, 299-304.	1.9	12
59	iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 2010, 121, 1419-1430.	3.6	223
60	Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mobile DNA, $2010,1,6.$	3.6	85
61	Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463, 763-768.	27.8	1,685
62	The International Barley Sequencing Consortiumâ€"At the Threshold of Efficient Access to the Barley Genome Â. Plant Physiology, 2009, 149, 142-147.	4.8	195
63	Copia and Gypsy retrotransposons activity in sunflower (Helianthus annuus L.). BMC Plant Biology, 2009, 9, 150.	3 . 6	38
64	Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theoretical and Applied Genetics, 2009, 119, 1027-1038.	3.6	66
65	Reply: A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nature Reviews Genetics, 2009, 10, 276-276.	16.3	41
66	Genomics of Transposable Elements in the Triticeae. , 2009, , 387-405.		4
67	Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Molecular Biology, 2008, 66, 137-150.	3.9	56
68	A universal classification of eukaryotic transposable elements implemented in Repbase. Nature Reviews Genetics, 2008, 9, 414-414.	16.3	5
69	<i>BARE</i> retrotransposons produce multiple groups of rarely polyadenylated transcripts from two differentially regulated promoters. Plant Journal, 2008, 56, 40-50.	5.7	22
70	<i>Cassandra</i> retrotransposons carry independently transcribed 5S RNA. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5833-5838.	7.1	127
71	The first doubled haploid linkage map for cultivated oat. Genome, 2008, 51, 560-569.	2.0	33
72	Life without GAG: The BARE-2 retrotransposon as a parasite's parasite. Gene, 2007, 390, 166-174.	2.2	48

#	Article	IF	CITATIONS
73	A major gene for grain cadmium accumulation in oat (<i>Avena sativa</i> L.). Genome, 2007, 50, 588-594.	2.0	60
74	A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 2007, 8, 973-982.	16.3	2,396
75	Template switching can create complex LTR retrotransposon insertions in Triticeae genomes. BMC Genomics, 2007, 8, 247.	2.8	25
76	Molecular markers to assess genetic diversity. Euphytica, 2007, 158, 313-321.	1.2	114
77	Mapping of major spot-type and net-type net-blotch resistance genes in the Ethiopian barley line CI 9819. Genome, 2006, 49, 1564-1571.	2.0	73
78	IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols, 2006, 1, 2478-2484.	12.0	224
79	Integrase diversity and transcription of the maize retrotransposon Grande. Genome, 2006, 49, 558-562.	2.0	12
80	Generation of SNP markers for short straw in oat (Avena sativa L.). Genome, 2006, 49, 282-287.	2.0	24
81	Parasitism and the retrotransposon life cycle in plants: a hitchhiker's guide to the genome. Heredity, 2006, 97, 381-388.	2.6	136
82	An atlas of gene expression from seed to seed through barley development. Functional and Integrative Genomics, 2006, 6, 202-211.	3.5	138
83	TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theoretical and Applied Genetics, 2006, 112, 999-1008.	3.6	79
84	Retrotransposons: Metaparasites and Agents of Genome Evolution. Israel Journal of Ecology and Evolution, 2006, 52, 319-330.	0.6	3
85	Variability, Recombination, and Mosaic Evolution of the Barley BARE-1 Retrotransposon. Journal of Molecular Evolution, 2005, 61, 275-291.	1.8	62
86	Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. Journal of Plant Biology, 2005, 48, 96-105.	2.1	77
87	A movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenetic and Genome Research, 2005, 110, 598-605.	1.1	49
88	The Application of LTR Retrotransposons as Molecular Markers in Plants., 2004, 260, 145-174.		85
89	Large Retrotransposon Derivatives: Abundant, Conserved but Nonautonomous Retroelements of Barley and Related Genomes. Genetics, 2004, 166, 1437-1450.	2.9	157
90	Organization of Retrotransposons and Microsatellites in Cereal Genomes. , 2004, , 83-118.		6

#	Article	IF	Citations
91	Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Molecular Genetics and Genomics, 2003, 269, 464-474.	2.1	87
92	Development of new marker methodsâ€"an example from oil palm. Plant Genetic Resources: Characterisation and Utilisation, 2003, 1, 103-113.	0.8	8
93	Retrotransposons and Genomic Stability in Populations of the Young Allopolyploid Species Spartina anglica C.E. Hubbard (Poaceae). Molecular Biology and Evolution, 2002, 19, 1218-1227.	8.9	168
94	A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Molecular Biology, 2002, 48, 767-789.	3.9	95
95	Mapping of genes affecting linolenic acid content in Brassica rapa ssp. oleifera. Molecular Breeding, 2002, 10, 51-62.	2.1	23
96	Copia-Like Retrotransposons in the Rice Genome: Few and Assorted. Journal of Genome Science and Technology, 2002, 1, 35-47.	0.5	23
97	<i>Envelope</i> -Class Retrovirus-Like Elements Are Widespread, Transcribed and Spliced, and Insertionally Polymorphic in Plants. Genome Research, 2001, 11, 2041-2049.	5.5	86
98	Active Retrotransposons Are a Common Feature of Grass Genomes. Plant Physiology, 2001, 125, 1283-1292.	4.8	188
99	Barley Mutagenesis. Progress in Botany Fortschritte Der Botanik, 2001, , 34-50.	0.3	3
100	Characterisation of Dextrins Solubilised by \hat{l}_{\pm} -Amylase from Barley Starch Granules. Starch/Staerke, 2000, 52, 160-163.	2.1	6
101	Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Molecular Genetics and Genomics, 2000, 264, 325-334.	2.1	135
102	Genome evolution of wild barley (<i>Hordeum spontaneum</i>) by <i>BARE</i> -1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6603-6607.	7.1	553
103	A Contiguous 66-kb Barley DNA Sequence Provides Evidence for Reversible Genome Expansion. Genome Research, 2000, 10, 908-915.	5.5	285
104	Grain filling and starch synthesis in barley. Developments in Crop Science, 2000, 26, 147-167.	0.1	3
105	Structure, functionality, and evolution of the BARE-1 retrotransposon of barley., 2000, , 53-63.		0
106	Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell, 1999, 11, 1769.	6.6	4
107	Retrotransposon <i>BARE-1</i> and Its Role in Genome Evolution in the Genus <i>Hordeum</i> Plant Cell, 1999, 11, 1769-1784.	6.6	333
108	Retrotransposon BAREâ€1: expression of encoded proteins and formation of virusâ€like particles in barley cells. Plant Journal, 1999, 20, 413-422.	5.7	55

#	Article	IF	CITATIONS
109	Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica, 1999, 107, 53-63.	1.1	43
110	Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Molecular Genetics and Genomics, 1999, 261, 883-891.	2.4	86
111	IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics, 1999, 98, 704-711.	3.6	468
112	Plant cells sell plants. Trends in Biotechnology, 1998, 16, 1-2.	9.3	0
113	Gypsyâ€like retrotransposons are widespread in the plant kingdom. Plant Journal, 1998, 13, 699-705.	5.7	166
114	The effect of growth temperature on gelatinization properties of barley starch. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 1998, 48, 85-90.	0.6	12
115	The core domain of retrotransposon integrase in Hordeum: predicted structure and evolution. Molecular Biology and Evolution, 1998, 15, 1135-1144.	8.9	25
116	HEAT-INDUCED STRUCTURAL CHANGES OF SMALL AND LARGE BARLEY STARCH GRANULES. Journal of the Institute of Brewing, 1998, 104, 343-349.	2.3	36
117	Bare-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica, 1997, 100, 219-230.	1.1	44
118	BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Contemporary Issues in Genetics and Evolution, 1997, , 219-230.	0.9	25
119	The genome sizes of <i>Hordeum </i> species show considerable variation. Genome, 1996, 39, 730-735.	2.0	26
120	Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Molecular Biology, 1996, 30, 1321-1329.	3.9	128
121	The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Molecular Biology, 1996, 31, 295-306.	3.9	121
122	Structural analysis of starch from normal and shx (shrunken endosperm) barley (Hordeum vulgare) Tj ETQq0 0 0	rgBT ₃ /Over	logk 10 Tf 50
123	Metabolism of starch synthesis in developing grains of the shx shrunken mutant of barley (Hordeum) Tj ETQq $1\ 1$	0.784314	rgBT /Ovedo
124	The Effect of the Shrunken Endosperm Mutation shx on Starch Granule Development in Barley Seeds. Journal of Cereal Science, 1994, 19, 49-55.	3.7	13
125	BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Molecular Biology, 1993, 22, 829-846.	3.9	197
126	An analysis of soluble starch synthase isozymes from the developing grains of normal and shx cv. Bomi barley (Hordeum vulgare). Physiologia Plantarum, 1993, 89, 835-841.	5.2	14

#	Article	IF	CITATIONS
127	Swelling and Gelatinization of Cereal Starches. V. Ris \tilde{A}_s Mutants of Bomi and Carlsberg II Barley Cultivars. Journal of Cereal Science, 1993, 17, 1-9.	3.7	60
128	An analysis of soluble starch synthase isozymes from the developing grains of normal and shx cv. Bomi barley (Hordeum vulgare). Physiologia Plantarum, 1993, 89, 835-841.	5.2	9
129	Purification of Barley Starch by Protein Extraction. Starch/Staerke, 1991, 43, 387-389.	2.1	11
130	A novel shrunken endosperm mutant of barley. Physiologia Plantarum, 1990, 78, 583-589.	5.2	18