
Matthias Kloor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4371289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colorectal cancer. Lancet, The, 2014, 383, 1490-1502.	13.7	2,455
2	Potential of fecal microbiota for earlyâ€stage detection of colorectal cancer. Molecular Systems Biology, 2014, 10, 766.	7.2	991
3	Immune Response Against Frameshift-Induced Neopeptides in HNPCC Patients and Healthy HNPCC Mutation Carriers. Gastroenterology, 2008, 134, 988-997.	1.3	319
4	The Immune Biology of Microsatellite-Unstable Cancer. Trends in Cancer, 2016, 2, 121-133.	7.4	193
5	Efficacy of Annual Colonoscopic Surveillance in Individuals With Hereditary Nonpolyposis Colorectal Cancer. Clinical Gastroenterology and Hepatology, 2010, 8, 174-182.	4.4	160
6	Genotype-Phenotype Comparison of German MLH1 and MSH2 Mutation Carriers Clinically Affected With Lynch Syndrome: A Report by the German HNPCC Consortium. Journal of Clinical Oncology, 2006, 24, 4285-4292.	1.6	149
7	Prevalence of mismatch repair-deficient crypt foci in Lynch syndrome: a pathological study. Lancet Oncology, The, 2012, 13, 598-606.	10.7	147
8	Genetic Evolution of T-cell Resistance in the Course of Melanoma Progression. Clinical Cancer Research, 2014, 20, 6593-6604.	7.0	145
9	Immunoselective Pressure and Human Leukocyte Antigen Class I Antigen Machinery Defects in Microsatellite Unstable Colorectal Cancers. Cancer Research, 2005, 65, 6418-6424.	0.9	139
10	Overexpression of ZEB2 at the Invasion Front of Colorectal Cancer Is an Independent Prognostic Marker and Regulates Tumor Invasion <i>In Vitro</i> . Clinical Cancer Research, 2011, 17, 7654-7663.	7.0	132
11	Colorectal mixed adenoneuroendocrine carcinomas and neuroendocrine carcinomas are genetically closely related to colorectal adenocarcinomas. Modern Pathology, 2017, 30, 610-619.	5.5	131
12	Three molecular pathways model colorectal carcinogenesis in <scp>L</scp> ynch syndrome. International Journal of Cancer, 2018, 143, 139-150.	5.1	129
13	T25 Repeat in the 3′ Untranslated Region of the CASP2 Gene: A Sensitive and Specific Marker for Microsatellite Instability in Colorectal Cancer. Cancer Research, 2005, 65, 8072-8078.	0.9	125
14	Immune evasion of microsatellite unstable colorectal cancers. International Journal of Cancer, 2010, 127, 1001-1010.	5.1	120
15	Spectrum and frequencies of mutations inMSH2 andMLH1 identified in 1,721 German families suspected of hereditary nonpolyposis colorectal cancer. International Journal of Cancer, 2005, 116, 692-702.	5.1	113
16	No Difference in Colorectal Cancer Incidence or Stage at Detection by Colonoscopy Among 3 Countries With Different Lynch Syndrome Surveillance Policies. Gastroenterology, 2018, 155, 1400-1409.e2.	1.3	112
17	Beta2â€microglobulin mutations in microsatellite unstable colorectal tumors. International Journal of Cancer, 2007, 121, 454-458.	5.1	100
18	Novel strategy for optimal sequential application of clinical criteria, immunohistochemistry and microsatellite analysis in the diagnosis of hereditary nonpolyposis colorectal cancer. International Journal of Cancer, 2006, 118, 115-122.	5.1	98

#	Article	IF	CITATIONS
19	BRAF V600Eâ€specific immunohistochemistry for the exclusion of Lynch syndrome in MSIâ€H colorectal cancer. International Journal of Cancer, 2013, 133, 1624-1630.	5.1	93
20	Statin Use and Survival After Colorectal Cancer: The Importance of Comprehensive Confounder Adjustment. Journal of the National Cancer Institute, 2015, 107, djv045.	6.3	91
21	Complex pattern of immune evasion in MSI colorectal cancer. Oncolmmunology, 2018, 7, e1445453.	4.6	90
22	A Frameshift Peptide Neoantigen-Based Vaccine for Mismatch Repair-Deficient Cancers: A Phase I/IIa Clinical Trial. Clinical Cancer Research, 2020, 26, 4503-4510.	7.0	81
23	The putative tumor suppressor <i>AIM2</i> is frequently affected by different genetic alterations in microsatellite unstable colon cancers. Genes Chromosomes and Cancer, 2007, 46, 1080-1089.	2.8	79
24	The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution. Nature Communications, 2020, 11, 4740.	12.8	78
25	Microsatellite instability of selective target genes in HNPCC-associated colon adenomas. Oncogene, 2005, 24, 2525-2535.	5.9	76
26	CTNNB1-mutant colorectal carcinomas with immediate invasive growth: a model of interval cancers in Lynch syndrome. Familial Cancer, 2016, 15, 579-586.	1.9	75
27	Microsatellite instability in the development of DNA mismatch repair deficient tumors. Cancer Biomarkers, 2006, 2, 69-86.	1.7	71
28	Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma. British Journal of Cancer, 2019, 120, 109-114.	6.4	71
29	Genomic and transcriptomic heterogeneity of colorectal tumours arising in Lynch syndrome. Journal of Pathology, 2017, 243, 242-254.	4.5	69
30	Biallelic MLH1 SNP cDNA expression or constitutional promoter methylation can hide genomic rearrangements causing Lynch syndrome. Journal of Medical Genetics, 2011, 48, 513-519.	3.2	68
31	HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncolmmunology, 2017, 6, e1171447.	4.6	64
32	The Association Between Mutations in BRAF and Colorectal Cancer–Specific Survival Depends on Microsatellite Status and Tumor Stage. Clinical Gastroenterology and Hepatology, 2019, 17, 455-462.e6.	4.4	62
33	Microsatellite instability in pulmonary adenocarcinomas: a comprehensive study of 480 cases. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2016, 468, 313-319.	2.8	60
34	Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden. Oncolmmunology, 2018, 7, e1526613.	4.6	60
35	Associations of Pathogenic Variants in MLH1, MSH2, and MSH6 With Risk of Colorectal Adenomas and Tumors and With Somatic Mutations in Patients With Lynch Syndrome. Gastroenterology, 2020, 158, 1326-1333.	1.3	60
36	Mismatch Repair-Deficient Crypt Foci in Lynch Syndrome – Molecular Alterations and Association with Clinical Parameters. PLoS ONE, 2015, 10, e0121980.	2.5	57

#	Article	IF	CITATIONS
37	Recurrent Frameshift Neoantigen Vaccine Elicits Protective Immunity With Reduced Tumor Burden and Improved Overall Survival in a Lynch Syndrome Mouse Model. Gastroenterology, 2021, 161, 1288-1302.e13.	1.3	56
38	The "unnatural―history of colorectal cancer in Lynch syndrome: Lessons from colonoscopy surveillance. International Journal of Cancer, 2021, 148, 800-811.	5.1	55
39	Towards a vaccine to prevent cancer in Lynch syndrome patients. Familial Cancer, 2013, 12, 307-312.	1.9	54
40	Successful immune checkpoint blockade in a patient with advanced stage microsatellite-unstable biliary tract cancer. Journal of Physical Education and Sports Management, 2017, 3, a001974.	1.2	54
41	Clinical significance of microsatellite instability in colorectal cancer. Langenbeck's Archives of Surgery, 2014, 399, 23-31.	1.9	52
42	Smoking, alcohol consumption and colorectal cancer risk by molecular pathological subtypes and pathways. British Journal of Cancer, 2020, 122, 1604-1610.	6.4	52
43	Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathologica, 2021, 141, 85-100.	7.7	52
44	Genetics and epigenetics of small bowel adenocarcinoma: the interactions of CIN, MSI, and CIMP. Modern Pathology, 2011, 24, 564-570.	5.5	51
45	Prognostic significance of microsatelliteâ€instability in gastric and gastroesophageal junction cancer patients undergoing neoadjuvant chemotherapy. International Journal of Cancer, 2019, 144, 1697-1703.	5.1	51
46	Microsatellite Analysis of Hereditary Nonpolyposis Colorectal Cancer-Associated Colorectal Adenomas by Laser-Assisted Microdissection. Journal of Molecular Diagnostics, 2005, 7, 160-170.	2.8	49
47	The molecular basis of EPCAM expression loss in Lynch syndrome-associated tumors. Modern Pathology, 2012, 25, 911-916.	5.5	49
48	High numbers of PDCD1 (PD-1)-positive T cells and <i>B2M</i> mutations in microsatellite-unstable colorectal cancer. Oncolmmunology, 2018, 7, e1390640.	4.6	48
49	Weakly supervised annotationâ€free cancer detection and prediction of genotype in routine histopathology. Journal of Pathology, 2022, 256, 50-60.	4.5	48
50	Serum antibodies against frameshift peptides in microsatellite unstable colorectal cancer patients with Lynch syndrome. Familial Cancer, 2010, 9, 173-179.	1.9	47
51	Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes. International Journal of Cancer, 2010, 127, 889-898.	5.1	46
52	Analysis of EPCAM Protein Expression in Diagnostics of Lynch Syndrome. Journal of Clinical Oncology, 2011, 29, 223-227.	1.6	46
53	T cell responses against microsatellite instability-induced frameshift peptides and influence of regulatory T cells in colorectal cancer. Cancer Immunology, Immunotherapy, 2013, 62, 27-37.	4.2	46
54	Dendritic cell and macrophage infiltration in microsatellite-unstable and microsatellite-stable colorectal cancer. Familial Cancer, 2011, 10, 557-565.	1.9	45

#	Article	IF	CITATIONS
55	Associations Between Molecular Classifications of Colorectal Cancer and Patient Survival: A Systematic Review. Clinical Gastroenterology and Hepatology, 2019, 17, 402-410.e2.	4.4	44
56	No association of CpG island methylator phenotype and colorectal cancer survival: population-based study. British Journal of Cancer, 2016, 115, 1359-1366.	6.4	43
57	Lack of association between screening interval and cancer stage in Lynch syndrome may be accounted for by over-diagnosis; a prospective Lynch syndrome database report. Hereditary Cancer in Clinical Practice, 2019, 17, 8.	1.5	42
58	Genomic Characterization of Cholangiocarcinoma in Primary Sclerosing Cholangitis Reveals Therapeutic Opportunities. Hepatology, 2020, 72, 1253-1266.	7.3	42
59	Association of high CD4-positive T cell infiltration with mutations in HLA class II-regulatory genes in microsatellite-unstable colorectal cancer. Cancer Immunology, Immunotherapy, 2015, 64, 357-366.	4.2	41
60	Genotyping of colorectal cancer for cancer precision medicine: Results from the IPH Center for Molecular Pathology. Genes Chromosomes and Cancer, 2016, 55, 505-521.	2.8	34
61	Associations of red and processed meat intake with major molecular pathological features of colorectal cancer. European Journal of Epidemiology, 2017, 32, 409-418.	5.7	34
62	Association of Aspirin and Nonsteroidal Anti-Inflammatory Drugs With Colorectal Cancer Risk by Molecular Subtypes. Journal of the National Cancer Institute, 2019, 111, 475-483.	6.3	34
63	Detection of coding microsatellite frameshift mutations in DNA mismatch repairâ€deficient mouse intestinal tumors. Molecular Carcinogenesis, 2015, 54, 1376-1386.	2.7	33
64	A phase 1/2a study to test the safety and immunogenicity of a p16 ^{INK4a} peptide vaccine in patients with advanced human papillomavirusâ€associated cancers. Cancer, 2016, 122, 1425-1433.	4.1	33
65	A large MSH2 Alu insertion mutation causes HNPCC in a German kindred. Human Genetics, 2004, 115, 432-438.	3.8	32
66	Cancer risks in Lynch syndrome, Lynch-like syndrome, and familial colorectal cancer type X: a prospective cohort study. BMC Cancer, 2020, 20, 460.	2.6	32
67	Genome-wide analysis associates familial colorectal cancer with increases in copy number variations and a rare structural variation at 12p12.3. Carcinogenesis, 2014, 35, 315-323.	2.8	31
68	Overexpression of <scp>SIX1</scp> is an independent prognostic marker in stage <scp>I</scp> – <scp>III</scp> colorectal cancer. International Journal of Cancer, 2015, 137, 2104-2113.	5.1	31
69	Deep learning detects genetic alterations in cancer histology generated by adversarial networks. Journal of Pathology, 2021, 254, 70-79.	4.5	31
70	High Frequency of <i>LMAN1</i> Abnormalities in Colorectal Tumors with Microsatellite Instability. Cancer Research, 2009, 69, 292-299.	0.9	29
71	Low density of FOXP3-positive T cells in normal colonic mucosa is related to the presence of beta2-microglobulin mutations in Lynch syndrome-associated colorectal cancer. OncoImmunology, 2016, 5, e1075692.	4.6	28
72	Genetic heterogeneity in synchronous colorectal cancers impacts genotyping approaches and therapeutic strategies. Genes Chromosomes and Cancer, 2016, 55, 268-277.	2.8	28

#	Article	IF	CITATIONS
73	Value of upper <scp>gastrointestinal</scp> endoscopy for gastric cancer surveillance in patients with Lynch syndrome. International Journal of Cancer, 2021, 148, 106-114.	5.1	28
74	Survival by colon cancer stage and screening interval in Lynch syndrome: a prospective Lynch syndrome database report. Hereditary Cancer in Clinical Practice, 2019, 17, 28.	1.5	27
75	The Different Immune Profiles of Normal Colonic Mucosa in Cancer-Free Lynch Syndrome Carriers and Lynch Syndrome Colorectal Cancer Patients. Gastroenterology, 2022, 162, 907-919.e10.	1.3	27
76	The majority of Î ² -catenin mutations in colorectal cancer is homozygous. BMC Cancer, 2020, 20, 1038.	2.6	25
77	Microsatellite instability and survival after adjuvant chemotherapy among stage II and III colon cancer patients: results from a populationâ€based study. Molecular Oncology, 2020, 14, 363-372.	4.6	23
78	Implications of Hereditary Origin on the Immune Phenotype of Mismatch Repair-Deficient Cancers: Systematic Literature Review. Journal of Clinical Medicine, 2020, 9, 1741.	2.4	22
79	NMD inhibition by 5-azacytidine augments presentation of immunogenic frameshift-derived neoepitopes. IScience, 2021, 24, 102389.	4.1	22
80	Vaccines for immunoprevention of DNA mismatch repair deficient cancers. , 2022, 10, e004416.		21
81	High endothelial venules are associated with microsatellite instability, hereditary background and immune evasion in colorectal cancer. British Journal of Cancer, 2019, 121, 395-404.	6.4	20
82	Low frequency of mismatch repair deficiency in gallbladder cancer. Diagnostic Pathology, 2019, 14, 36.	2.0	19
83	External validation of molecular subtype classifications of colorectal cancer based on microsatellite instability, CIMP, BRAF and KRAS. BMC Cancer, 2019, 19, 681.	2.6	18
84	<p>E3 ubiquitin ligase Smurf2: a prognostic factor in microsatellite stable colorectal cancer</p> . Cancer Management and Research, 2019, Volume 11, 1795-1803.	1.9	18
85	Colonoscopy and Reduction of Colorectal Cancer Risk by Molecular Tumor Subtypes: A Population-Based Case-Control Study. American Journal of Gastroenterology, 2020, 115, 2007-2016.	0.4	18
86	No evidence of oncogenic KRAS mutations in squamous cell carcinomas of the anogenital tract and head and neck region independent of human papillomavirus and p16INK4a status. Human Pathology, 2014, 45, 2347-2354.	2.0	17
87	Ageâ€dependent performance of <scp><i>BRAF</i></scp> mutation testing in Lynch syndrome diagnostics. International Journal of Cancer, 2020, 147, 2801-2810.	5.1	17
88	Lynch syndrome: clinical, pathological, and genetic insights. Langenbeck's Archives of Surgery, 2012, 397, 513-525.	1.9	16
89	Doseâ€dependent effect of 2â€deoxyâ€Dâ€glucose on glycoprotein mannosylation in cancer cells. IUBMB Life, 2015, 67, 218-226.	3.4	16
90	Association of BMI and major molecular pathological markers of colorectal cancer in men and women. American Journal of Clinical Nutrition, 2020, 111, 562-569.	4.7	15

#	Article	IF	CITATIONS
91	Clinical Characteristics and Outcomes of Colorectal Cancer in the ColoCare Study: Differences by Age of Onset. Cancers, 2021, 13, 3817.	3.7	15
92	Mismatch Repair Deficiency Drives Durable Complete Remission by Targeting Programmed Death Receptor 1 in a Metastatic Luminal Breast Cancer Patient. Breast Care, 2019, 14, 53-59.	1.4	13
93	The association between microsatellite instability and lymph node count in colorectal cancer. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2017, 471, 57-64.	2.8	12
94	Postmenopausal hormone replacement therapy and colorectal cancer risk by molecular subtypes and pathways. International Journal of Cancer, 2020, 147, 1018-1026.	5.1	12
95	Molecular testing for microsatellite instability and its value in tumor characterization. Expert Review of Molecular Diagnostics, 2005, 5, 599-611.	3.1	11
96	Tetranucleotide repeats in coding regions: no evidence for involvement in EMAST carcinogenesis. Journal of Molecular Medicine, 2006, 84, 329-333.	3.9	11
97	Does Side Really Matter? Survival Analysis among Patients with Right- Versus Left-Sided Colon Cancer: A Propensity Score-Adjusted Analysis. Annals of Surgical Oncology, 2021, 28, 2768-2778.	1.5	11
98	Mathematical modeling of multiple pathways in colorectal carcinogenesis using dynamical systems with Kronecker structure. PLoS Computational Biology, 2021, 17, e1008970.	3.2	11
99	Beta-2-microglobulin Mutations Are Linked to a Distinct Metastatic Pattern and a Favorable Outcome in Microsatellite-Unstable Stage IV Gastrointestinal Cancers. Frontiers in Oncology, 2021, 11, 669774.	2.8	11
100	Identification and characterization of UEV3, a human cDNA with similarities to inactive E2 ubiquitin-conjugating enzymes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1579, 219-224.	2.4	9
101	Hematological Malignancies in Adults With a Family Predisposition. Deutsches Ärzteblatt International, 2018, 115, 848-854.	0.9	9
102	Analyzing epigenetic control of galectin expression indicates silencing of galectinâ€12 by promoter methylation in colorectal cancer. IUBMB Life, 2017, 69, 962-970.	3.4	8
103	The coding microsatellite mutation profile of PMS2-deficient colorectal cancer. Experimental and Molecular Pathology, 2021, 122, 104668.	2.1	8
104	(Phospho)proteomic Profiling of Microsatellite Unstable CRC Cells Reveals Alterations in Nuclear Signaling and Cholesterol Metabolism Caused by Frameshift Mutation of NMD Regulator UPF3A. International Journal of Molecular Sciences, 2020, 21, 5234.	4.1	6
105	Identification of MLH2/hPMS1 dominant mutations that prevent DNA mismatch repair function. Communications Biology, 2020, 3, 751.	4.4	5
106	Coding Microsatellite Frameshift Mutations Accumulate in Atherosclerotic Carotid Artery Lesions: Evaluation of 26 Cases and Literature Review. Molecular Medicine, 2015, 21, 479-486.	4.4	4
107	The Immune Biology of Microsatellite Unstable Cancer. , 2018, , 367-384.		4
108	A prognostic CpG score derived from epigenome-wide profiling of tumor tissue was independently associated with colorectal cancer survival. Clinical Epigenetics, 2019, 11, 109.	4.1	4

#	Article	IF	CITATIONS
109	Early detection of duodenal cancer by upper <scp>gastrointestinal</scp> â€endoscopy in Lynch syndrome. International Journal of Cancer, 2021, 149, 2052-2062.	5.1	4
110	Outcome and prognostic factors in patients undergoing salvage therapy for recurrent esophagogastric cancer after multimodal treatment. Journal of Cancer Research and Clinical Oncology, 2023, 149, 1373-1382.	2.5	4
111	Distinct Mutational Profile of Lynch Syndrome Colorectal Cancers Diagnosed under Regular Colonoscopy Surveillance. Journal of Clinical Medicine, 2021, 10, 2458.	2.4	3
112	Clinical characteristics and EGD surveillance in Lynch-syndrome patients with small bowel/duodenal carcinomas Journal of Clinical Oncology, 2018, 36, 1555-1555.	1.6	3
113	Adenoma and colorectal cancer risks in Lynch syndrome, Lynchâ€like syndrome and familial colorectal cancer type X. International Journal of Cancer, 2022, 150, 56-66.	5.1	2
114	Treatment resistance analysis reveals GLUTâ€1â€mediated glucose uptake as a major target of synthetic rocaglates in cancer cells. Cancer Medicine, 2021, 10, 6807-6822.	2.8	2
115	Response to neoadjuvant treatment among rectal cancer patients in a population-based cohort. International Journal of Colorectal Disease, 2021, 36, 177-185.	2.2	1
116	Genetic Variants in the Regulatory T cell–Related Pathway and Colorectal Cancer Prognosis. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2719-2728.	2.5	1
117	Differential Glycosite Profiling—A Versatile Method to Compare Membrane Glycoproteomes. Molecules, 2021, 26, 3564.	3.8	0
118	A computational model for investigating the evolution of colonic crypts during Lynch syndrome carcinogenesis. Computational and Systems Oncology, 2021, 1, e1020.	1.5	0
119	Resistance of the stable—towards more precise prediction of response to immune checkpoint blockade in microsatellite-unstable cancer natients. Annals of Translational Medicine, 2019, 7, 603-603	1.7	0