
Stefano Leporatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/436887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The mRNA technology in cancer immunotherapy. Current Nanomaterials, 2022, 07, .	0.4	0
2	Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. International Journal of Molecular Sciences, 2022, 23, 3360.	4.1	20
3	Monodisperse and Nanometric-Sized Calcium Carbonate Particles Synthesis Optimization. Nanomaterials, 2022, 12, 1494.	4.1	6
4	AFM Characterization of Halloysite Clay Nanocomposites' Superficial Properties: Current State-of-the-Art and Perspectives. Materials, 2022, 15, 3441.	2.9	4
5	Impact of Nanomaterials in Biological Systems and Applications in Nanomedicine Field. Nanomaterials, 2022, 12, 1775.	4.1	1
6	Starch-Based Hydrogel Nanoparticles Loaded with Polyphenolic Compounds of Moringa Oleifera Leaf Extract Have Hepatoprotective Activity in Bisphenol A-Induced Animal Models. Polymers, 2022, 14, 2846.	4.5	10
7	Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. Journal of Materials Chemistry B, 2021, 9, 2756-2784.	5.8	32
8	Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. Nano Express, 2021, 2, 012006.	2.4	37
9	Extraction of chlorophyll and carotenoids loaded into chitosan as potential targeted therapy and bio imaging agents for breast carcinoma. International Journal of Biological Macromolecules, 2021, 182, 1150-1160.	7.5	28
10	HALLOYSITE-BASED NANOSYSTEMS FOR BIOMEDICAL APPLICATIONS. Clays and Clay Minerals, 2021, 69, 501-521.	1.3	11
11	Chitosan Nanoparticles for Antiviral Drug Delivery: A Novel Route for COVID-19 Treatment. International Journal of Nanomedicine, 2021, Volume 16, 8141-8158.	6.7	12
12	Design of nano-clays for drug delivery and bio-imaging: can toxicity be an issue?. Nanomedicine, 2020, 15, 2429-2432.	3.3	4
13	Nano targeted Therapies Made of Lipids and Polymers have Promising Strategy for the Treatment of Lung Cancer. Materials, 2020, 13, 5397.	2.9	13
14	Biomechanics of Cell Membrane. International Journal of Molecular Sciences, 2020, 21, 5413.	4.1	0
15	Editorial: Functionalized Nanocarriers for Theranostics. Frontiers in Bioengineering and Biotechnology, 2020, 8, 616574.	4.1	0
16	The New Frontiers in Neurodegenerative Diseases Treatment: Liposomal-Based Strategies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 566767.	4.1	18
17	Encapsulating TGF-β1 Inhibitory Peptides P17 and P144 as a Promising Strategy to Facilitate Their Dissolution and to Improve Their Functionalization. Pharmaceutics, 2020, 12, 421.	4.5	13
18	Mucoadhesive curcumin crosslinked carboxy methyl cellulose might increase inhibitory efficiency for liver cancer treatment. Materials Science and Engineering C, 2020, 116, 111119.	7.3	29

#	Article	IF	CITATIONS
19	Current Overview of Inorganic Nanoparticles for the Treatment of Central Nervous System (CNS) Diseases. Current Nanomaterials, 2020, 5, 92-110.	0.4	6
20	Smart Nanotheranostics Responsive to Pathological Stimuli. Frontiers in Bioengineering and Biotechnology, 2020, 8, 503.	4.1	22
21	Resveratrol-Induced Temporal Variation in the Mechanical Properties of MCF-7 Breast Cancer Cells Investigated by Atomic Force Microscopy. International Journal of Molecular Sciences, 2019, 20, 3275.	4.1	25
22	Acute Cytotoxic Effects on Morphology and Mechanical Behavior in MCF-7 Induced by TiO2NPs Exposure. International Journal of Molecular Sciences, 2019, 20, 3594.	4.1	7
23	Validation of Hepatocellular Carcinoma Experimental Models for TGF-β Promoting Tumor Progression. Cancers, 2019, 11, 1510.	3.7	21
24	<p>Conjugation Of EGCG And Chitosan NPs As A Novel Nano-Drug Delivery System</p> . International Journal of Nanomedicine, 2019, Volume 14, 8033-8046.	6.7	35
25	Polymer Clay Nano-Composites. Polymers, 2019, 11, 1445.	4.5	6
26	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	14.6	211
27	Chitosan as a Natural Copolymer with Unique Properties for the Development of Hydrogels. Applied Sciences (Switzerland), 2019, 9, 2193.	2.5	67
28	Encapsulation of Thermo-Sensitive Lauric Acid in Silica Shell: A Green Derivate for Chemo-Thermal Therapy in Breast Cancer Cell. Molecules, 2019, 24, 2034.	3.8	10
29	Mucoadhesive Hydrogel Nanoparticles as Smart Biomedical Drug Delivery System. Applied Sciences (Switzerland), 2019, 9, 825.	2.5	53
30	Transforming Growth Factor-Î ² Promotes Morphomechanical Effects Involved in Epithelial to Mesenchymal Transition in Living Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2019, 20, 108.	4.1	10
31	Nano-carriers for targeted delivery and biomedical imaging enhancement. Therapeutic Delivery, 2018, 9, 451-468.	2.2	61
32	pH-Sensitive Poly(β-amino ester)s Nanocarriers Facilitate the Inhibition of Drug Resistance in Breast Cancer Cells. Nanomaterials, 2018, 8, 952.	4.1	51
33	Morphomechanical and organelle perturbation induced by silver nanoparticle exposure. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	21
34	Potential of Electrospun Poly(3-hydroxybutyrate)/Collagen Blends for Tissue Engineering Applications. Journal of Healthcare Engineering, 2018, 2018, 1-13.	1.9	29
35	Micelles Structure Development as a Strategy to Improve Smart Cancer Therapy. Cancers, 2018, 10, 238.	3.7	182
36	Inihibition of Glycolysis by Using a Micro/Nano-Lipid Bromopyruvic Chitosan Carrier as a Promising Tool to Improve Treatment of Hepatocellular Carcinoma. Nanomaterials, 2018, 8, 34.	4.1	26

#	Article	IF	CITATIONS
37	Polymeric Nano-Micelles as Novel Cargo-Carriers for LY2157299 Liver Cancer Cells Delivery. International Journal of Molecular Sciences, 2018, 19, 748.	4.1	31
38	Silver Nanoparticles: Synthetic Routes, In Vitro Toxicity and Theranostic Applications for Cancer Disease. Nanomaterials, 2018, 8, 319.	4.1	144
39	Morphomechanical Alterations Induced by Transforming Growth Factor-β1 in Epithelial Breast Cancer Cells. Cancers, 2018, 10, 234.	3.7	11
40	Atomic force microscopy combined with optical microscopy for cells investigation. Microscopy Research and Technique, 2017, 80, 109-123.	2.2	38
41	Scalable production of calcite nanocrystals by atomization process: Synthesis, characterization and biological interactions study. Advanced Powder Technology, 2017, 28, 2445-2455.	4.1	8
42	Halloysite clay nanotubes as nanoâ€bazookas for drug delivery. Polymer International, 2017, 66, 1111-1118.	3.1	35
43	Morphomechanical and structural changes induced by ROCK inhibitor in breast cancer cells. Experimental Cell Research, 2017, 360, 303-309.	2.6	25
44	Hybrid polymeric-protein nano-carriers (HPPNC) for targeted delivery of TGFβ inhibitors to hepatocellular carcinoma cells. Journal of Materials Science: Materials in Medicine, 2017, 28, 120.	3.6	26
45	Alpha-enolase (ENO1) controls alpha v/beta 3 integrin expression and regulates pancreatic cancer adhesion, invasion, and metastasis. Journal of Hematology and Oncology, 2017, 10, 16.	17.0	101
46	Automatic Echographic Detection of Halloysite Clay Nanotubes in a Low Concentration Range. Nanomaterials, 2016, 6, 66.	4.1	6
47	Surface Coating Highly Improves Cytocompatibility of Halloysite Nanotubes: A Metabolic and Ultrastructural Study. IEEE Nanotechnology Magazine, 2016, 15, 770-774.	2.0	16
48	Fabrication and characterization of ALK1fc-loaded fluoro-magnetic nanoparticles for inhibiting TGF β1 in hepatocellular carcinoma. RSC Advances, 2016, 6, 48834-48842.	3.6	13
49	A TGF-B Receptor I Kinase Inhibitor, Galunisertib (LY2157299) Inhibits Hepatocellular Carcinoma Progression in in Vivo Experimental Models. Journal of Hepatology, 2016, 64, S565.	3.7	1
50	Encapsulation of SHT-DNA, siRNA and Polypeptide -17 inside Hybrid Polymeric Nano-Protein Folic Acid (HPNP-FA) Carrier as Targeted TGFb Inhibitor for Hepatocellular Carcinoma. Journal of Hepatology, 2016, 64, S573.	3.7	1
51	The rationale for targeting <scp>TGF</scp> â€Î² in chronic liver diseases. European Journal of Clinical Investigation, 2016, 46, 349-361.	3.4	60
52	Halloysite Clay Nanotubes as Carriers for Curcumin: Characterization and Application. IEEE Nanotechnology Magazine, 2016, 15, 720-724.	2.0	36
53	CaCO ₃ Rods as Chitosan-Polygalacturonic Acid Carriers for Bromopyruvic Acid Delivery. Science of Advanced Materials, 2016, 8, 514-523.	0.7	10
54	P0253 : Inhibition of glycolysis by using nanolipid bromopyruvic chitosan carrier is a promising tool to prevent HCC invasiveness. Journal of Hepatology, 2015, 62, S401.	3.7	1

#	Article	IF	CITATIONS
55	Polymer oated Magnetic Nanoparticles for Curcumin Delivery to Cancer Cells. Macromolecular Bioscience, 2015, 15, 1365-1374.	4.1	58
56	Halloysite Clay Nanotubes as Carriers for Curcumin Delivery. , 2015, , .		0
57	Highly Improved Cytocompatibility of Halloysite Nanotubes through Polymeric Surface Modification. , 2015, , .		1
58	Ultrasound Signal Enhancement of Halloysite Clay Nanotubes at Medical Diagnostic Frequencies. , 2015, , .		1
59	Synthesis of biocompatible polymeric nano-capsules based on calcium carbonate: A potential cisplatin delivery system. Journal of Inorganic Biochemistry, 2015, 153, 284-292.	3.5	29
60	Proteomics analysis of E-cadherin knockdown in epithelial breast cancer cells. Journal of Biotechnology, 2015, 202, 3-11.	3.8	38
61	Control of colloidal CaCO3 suspension by using biodegradable polymers during fabrication. Beni-Suef University Journal of Basic and Applied Sciences, 2015, 4, 60-70.	2.0	13
62	Thiophene-based fluorescent probes with low cytotoxicity and high photostability for lysosomes in living cells. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 385-392.	2.4	14
63	Cytoskeletal Alterations and Biomechanical Properties of parkin-Mutant Human Primary Fibroblasts. Cell Biochemistry and Biophysics, 2015, 71, 1395-1404.	1.8	20
64	Automatic image detection of Halloysite clay Nanotubes as a future ultrasound theranostic agent for tumoral cell targeting and treatment. , 2014, , .		4
65	Multiparametric Evaluation of the Acoustic Behavior of Halloysite Nanotubes for Medical Echographic Image Enhancement. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 1423-1430.	4.7	20
66	Biological applications of LbL multilayer capsules: From drug delivery to sensing. Advances in Colloid and Interface Science, 2014, 207, 139-154.	14.7	121
67	Cytotoxicity measurements of Halloysite Nanotubes for nanomedicine applications. , 2014, , .		9
68	Cytoskeletal alterations of parkin-mutant human primary fibroblasts. Journal of Biotechnology, 2014, 185, S27-S28.	3.8	0
69	Quartz crystal microbalance with dissipation (QCM-D) as tool to exploit antigen–antibody interactions in pancreatic ductal adenocarcinomadetection. Biosensors and Bioelectronics, 2013, 42, 646-652.	10.1	29
70	In vitro targeting and imaging the translocator protein TSPO 18-kDa through G(4)-PAMAM–FITC labeled dendrimer. Journal of Controlled Release, 2013, 172, 1111-1125.	9.9	52
71	Assessment of the enhancement potential of Halloysite Nanotubes for echographic imaging. , 2013, , .		11
72	Towards pancreatic cancer diagnosis using EIS biochips. Lab on A Chip, 2013, 13, 730.	6.0	32

#	Article	IF	CITATIONS
73	TGF-Beta Inihibitor-loaded Polyelectrolyte Multilayers Capsules for Sustained Targeting of Hepatocarcinoma Cells. Current Pharmaceutical Design, 2012, 18, 4155-4164.	1.9	16
74	Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 891-899.	3.3	102
75	Halloysite Clay Nanotubes for Resveratrol Delivery to Cancer Cells. Macromolecular Bioscience, 2012, 12, 1265-1271.	4.1	167
76	Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells. Molecular BioSystems, 2012, 8, 1078.	2.9	91
77	Polyelectrolyte Capsules as Carriers for Growth Factor Inhibitor Delivery to Hepatocellular Carcinoma. Macromolecular Bioscience, 2012, 12, 656-665.	4.1	24
78	Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Advanced Drug Delivery Reviews, 2011, 63, 847-864.	13.7	182
79	Plant Oil Bodies: Novel Carriers to Deliver Lipophilic Molecules. Applied Biochemistry and Biotechnology, 2011, 163, 792-802.	2.9	26
80	Imatinib-loaded polyelectrolyte microcapsules for sustained targeting of BCR-ABL ⁺ leukemia stem cells. Nanomedicine, 2010, 5, 419-431.	3.3	33
81	Cytocompatibility and Uptake of Halloysite Clay Nanotubes. Biomacromolecules, 2010, 11, 820-826.	5.4	568
82	Multilayered Polyelectrolyte Capsules and Coated Colloids: Cytotoxicity and Uptake by Cancer Cells. Science of Advanced Materials, 2010, 2, 138-150.	0.7	15
83	Cytomechanical and topological investigation of MCF-7 cells by scanning force microscopy. Nanotechnology, 2009, 20, 055103.	2.6	62
84	Biomechanical and proteomic analysis of INF- β-treated astrocytes. Nanotechnology, 2009, 20, 455106.	2.6	11
85	Polyelectrolyte multilayer hollow capsules studied by small-angle neutron scattering (SANS). Soft Matter, 2009, 5, 214-219.	2.7	16
86	Small Angle Neutron Scattering Investigations (SANS) of Polyelectrolyte Multilayer Capsules Templated on Human Red Blood Cells. Langmuir, 2007, 23, 7209-7215.	3.5	18
87	Fusion of Enveloped Virus Nanoparticles with Polyelectrolyte-Supported Lipid Membranes for the Design of Bio/Nonbio Interfaces. Nano Letters, 2007, 7, 3540-3546.	9.1	34
88	Stability and fusion of lipid layers on polyelectrolyte multilayer supports studied by colloidal force spectroscopy. European Biophysics Journal, 2007, 36, 337-347.	2.2	11
89	Elasticity and adhesion of resting and lipopolysaccharide-stimulated macrophages. FEBS Letters, 2006, 580, 450-454.	2.8	56
90	Interaction forces between cellulose microspheres and ultrathin cellulose films monitored by colloidal probe microscopy—effect of wet strength agents. Journal of Colloid and Interface Science, 2005, 281, 101-111.	9.4	35

#	Article	IF	CITATIONS
91	Protamine Assembled in Multilayers on Colloidal Particles Can Be Exchanged and Released. Biomacromolecules, 2004, 5, 1580-1587.	5.4	32
92	Swelling and Shrinking of Polyelectrolyte Microcapsules in Response to Changes in Temperature and Ionic Strength. Chemistry - A European Journal, 2003, 9, 915-920.	3.3	160
93	Freeze-Fracture Electron Microscopy of Lipid Membranes on Colloidal Polyelectrolyte Multilayer Coated Supports. Biomacromolecules, 2003, 4, 808-814.	5.4	36
94	SANS Studies of Polyelectrolyte Multilayers on Colloidal Templates. Langmuir, 2002, 18, 7861-7866.	3.5	60
95	Synthesis and Encapsulation ofN,N,N′,N′-Tetrakis[â€p-Di(n-Butyl)aminophenyl]-p-benzoquinone-bis(Imon	ium) Tj ET	Qg1 1 0.784
96	Precipitation of Inorganic Salts inside Hollow Micrometer-Sized Polyelectrolyte Shells. Journal of Colloid and Interface Science, 2002, 247, 251-254.	9.4	26
97	Polyelectrolyte multilayer capsule permeability control. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 535-541.	4.7	305
98	Photochromic hollow shells: photoisomerization of azobenzene polyionene in solution, in multilayer assemblies on planar and spherical surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 483-489.	4.7	17
99	From Polymeric Films to Nanocapsules. Surfactant Science, 2002, , 91-103.	0.0	0
100	Studies on the Drug Release Properties of Polysaccharide Multilayers Encapsulated Ibuprofen Microparticles. Langmuir, 2001, 17, 5375-5380.	3.5	386
101	Stability and Mechanical Properties of Polyelectrolyte Capsules Obtained by Stepwise Assembly of Poly(styrenesulfonate sodium salt) and Poly(diallyldimethyl ammonium) Chloride onto Melamine Resin Particles. Langmuir, 2001, 17, 3491-3495.	3.5	202
102	Biological cells as templates for hollow microcapsules. Journal of Microencapsulation, 2001, 18, 385-395.	2.8	146
103	Fabrication of Micro Reaction Cages with Tailored Properties. Journal of the American Chemical Society, 2001, 123, 5431-5436.	13.7	242
104	Shrinking of ultrathin polyelectrolyte multilayer capsules upon annealing: A confocal laser scanning microscopy and scanning force microscopy study. European Physical Journal E, 2001, 5, 13-20.	1.6	112
105	Polyelectrolyte multilayer capsules templated on biological cells: core oxidation influences layer chemistry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 183-185, 27-40.	4.7	78
106	Layer-by-Layer Self-Assembly of Polyelectrolyte and Low Molecular Weight Species into Capsules. Advanced Materials, 2001, 13, 1339.	21.0	85
107	Novel polyelectrolyte multilayer micro- and nanocapsules as magnetic carriers. Journal of Magnetism and Magnetic Materials, 2001, 225, 59-66.	2.3	78
108	Assembly of Alternated Multivalent Ion/Polyelectrolyte Layers on Colloidal Particles. Stability of the Multilayers and Encapsulation of Macromolecules into Polyelectrolyte Capsules. Journal of Colloid and Interface Science, 2000, 230, 272-280.	9.4	177

#	Article	IF	CITATIONS
109	Coexistence of phases in monolayers of branched-chain phospholipids investigated by scanning force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 161, 159-171.	4.7	24
110	Molecular ordering and domain morphology of molecularly thin triacontane films at SiO 2 /air interfaces. Europhysics Letters, 2000, 52, 653-659.	2.0	42
111	Surface Texture of Poly(styrenesulfonate sodium salt) and Poly(diallyldimethylammonium chloride) Micron-Sized Multilayer Capsules:Â A Scanning Force and Confocal Microscopy Study. Journal of Physical Chemistry B, 2000, 104, 7144-7149.	2.6	48
112	Scanning Force Microscopy Investigation of Polyelectrolyte Nano- and Microcapsule Wall Texture. Langmuir, 2000, 16, 4059-4063.	3.5	143
113	Conductance and Capacitance of Polyelectrolyte and Lipidâ^'Polyelectrolyte Composite Capsules As Measured by Electrorotation. Langmuir, 2000, 16, 7075-7081.	3.5	57
114	Phase separation in phosphatidylinositol/phosphatidylcholine mixed monolayers. Chemistry and Physics of Lipids, 1999, 97, 129-138.	3.2	21
115	Triple-chain phospholipid monolayers: a scanning force microscopy and grazing incidence X-ray diffraction study. Applied Physics A: Materials Science and Processing, 1998, 66, S1245-S1249.	2.3	5
116	Condensed Phases of Branched-Chain Phospholipid Monolayers Investigated by Scanning Force Microscopy. Langmuir, 1998, 14, 7503-7510.	3.5	12
117	Oriented thick films grown by cryoelectrophoretic deposition. Superconductor Science and Technology, 1997, 10, 142-146.	3.5	11
118	Structural characterization of Langmuir-Blodgett films of nickel complexes with amphiphilic compounds. Thin Solid Films, 1996, 284-285, 181-186.	1.8	6
119	Polymerized Monomolecular Films: Microscopic Structure, Viscosity, and Photopolymerization Kinetics. Langmuir, 1995, 11, 3119-3129.	3.5	11
120	Measurements of surface roughness: use of a CCD camera to correlate doubly scattered speckle patterns. Applied Optics, 1995, 34, 7286.	2.1	14
121	Polymeric separated phase in monomolecular films revealed by scanning force microscopy. Langmuir, 1994, 10, 1334-1336.	3.5	4