

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4368414/publications.pdf Version: 2024-02-01

CASEVILANA

#	Article	IF	CITATIONS
1	Late-time Evolution and Modeling of the Off-axis Gamma-Ray Burst Candidate FIRST J141918.9+394036. Astrophysical Journal, 2022, 924, 16.	4.5	7
2	Characterizing the Fast Radio Burst Host Galaxy Population and its Connection to Transients in the Local and Extragalactic Universe. Astronomical Journal, 2022, 163, 69.	4.7	91
3	FIRST J153350.8+272729: The Radio Afterglow of a Decades-old Tidal Disruption Event. Astrophysical Journal, 2022, 925, 220.	4.5	7
4	On the Fast Radio Burst and Persistent Radio Source Populations. Astrophysical Journal, 2022, 927, 55.	4.5	19
5	The host galaxy and persistent radio counterpart of FRB 20201124A. Monthly Notices of the Royal Astronomical Society, 2022, 513, 982-990.	4.4	38
6	The Nascent Milliquasar VT J154843.06+220812.6: Tidal Disruption Event or Extreme Accretion State Change?. Astrophysical Journal, 2022, 929, 184.	4.5	5
7	The Large Dispersion and Scattering of FRB 20190520B Are Dominated by the Host Galaxy. Astrophysical Journal, 2022, 931, 87.	4.5	16
8	Robust Assessment of Clustering Methods for Fast Radio Transient Candidates. Astrophysical Journal, 2021, 914, 53.	4.5	3
9	ALMA and NOEMA constraints on synchrotron nebular emission from embryonic superluminous supernova remnants and radio–gamma-ray connection. Monthly Notices of the Royal Astronomical Society, 2021, 508, 44-51.	4.4	11
10	A Data-driven Technique Using Millisecond Transients to Measure the Milky Way Halo. Astrophysical Journal Letters, 2020, 895, L49.	8.3	20
11	A Distant Fast Radio Burst Associated with Its Host Galaxy by the Very Large Array. Astrophysical Journal, 2020, 899, 161.	4.5	62
12	Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors. Astrophysical Journal, 2020, 903, 152.	4.5	148
13	VLA/Realfast Detection of a Burst from FRB 180916.J0158+65 and Tests for Periodic Activity. Research Notes of the AAS, 2020, 4, 94.	0.7	22
14	No Radio Bursts Detected from FIRST J141918.9+394036 in Green Bank Telescope Observations. Research Notes of the AAS, 2020, 4, 50.	0.7	0
15	A Search for Late-time Radio Emission and Fast Radio Bursts from Superluminous Supernovae. Astrophysical Journal, 2019, 886, 24.	4.5	28
16	PySE: Software for extracting sources from radio images. Astronomy and Computing, 2018, 23, 92-102.	1.7	19
17	LOFAR 150-MHz observations of SS 433 and W 50. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5360-5377.	4.4	19
18	An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature, 2018, 553, 182-185.	27.8	368

#	Article	IF	CITATIONS
19	A Search for Molecular Gas in the Host Galaxy of FRB 121102. Astronomical Journal, 2018, 155, 227.	4.7	2
20	Fast Radio Burst 121102 Pulse Detection and Periodicity: A Machine Learning Approach. Astrophysical Journal, 2018, 866, 149.	4.5	135
21	Discovery of the Luminous, Decades-long, Extragalactic Radio Transient FIRST J141918.9+394036. Astrophysical Journal Letters, 2018, 866, L22.	8.3	44
22	Vys: A Protocol for Commensal Fast Transient Searches and Data Processing at the Very Large Array. Journal of Astronomical Instrumentation, 2018, 07, .	1.5	1
23	<i>realfast:</i> Real-time, Commensal Fast Transient Surveys with the Very Large Array. Astrophysical Journal, Supplement Series, 2018, 236, 8.	7.7	46
24	RFI flagging implications for short-duration transients. Astronomy and Computing, 2018, 23, 103-114.	1.7	6
25	Highest Frequency Detection of FRB 121102 at 4–8 GHz Using the Breakthrough Listen Digital Backend at the Green Bank Telescope. Astrophysical Journal, 2018, 863, 2.	4.5	226
26	The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102. Astrophysical Journal Letters, 2017, 834, L7.	8.3	495
27	A direct localization of a fast radio burst and its host. Nature, 2017, 541, 58-61.	27.8	616
28	The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales. Astrophysical Journal Letters, 2017, 834, L8.	8.3	300
29	Simultaneous X-Ray, Gamma-Ray, and Radio Observations of the Repeating Fast Radio Burst FRB 121102. Astrophysical Journal, 2017, 846, 80.	4.5	99
30	Simultaneous Monitoring of X-Ray and Radio Variability in Sagittarius A*. Astrophysical Journal, 2017, 845, 35.	4.5	17
31	A Multi-telescope Campaign on FRB 121102: Implications for the FRB Population. Astrophysical Journal, 2017, 850, 76.	4.5	148
32	The Nonhomogeneous Poisson Process for Fast Radio Burst Rates. Astronomical Journal, 2017, 154, 117.	4.7	51
33	FRB 121102 Is Coincident with a Star-forming Region in Its Host Galaxy. Astrophysical Journal Letters, 2017, 843, L8.	8.3	130
34	New methods to constrain the radio transient rate: results from a survey of four fields with LOFAR. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3161-3174.	4.4	25
35	Low-radio-frequency eclipses of the redback pulsar J2215+5135 observed in the image plane with LOFAR. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2681-2689.	4.4	26
36	LOFAR MSSS: detection of a low-frequency radio transient in 400Âh of monitoring of the North Celestial Pole. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2321-2342.	4.4	60

#	Article	IF	CITATIONS
37	ALMA and VLA measurements of frequency-dependent time lags in Sagittarius A*: evidence for a relativistic outflow. Astronomy and Astrophysics, 2015, 576, A41.	5.1	50
38	The LOFAR Multifrequency Snapshot Sky Survey (MSSS). Astronomy and Astrophysics, 2015, 582, A123.	5.1	85
39	Pulsar polarisation below 200 MHz: Average profiles and propagation effects. Astronomy and Astrophysics, 2015, 576, A62.	5.1	68
40	The LOFAR Transients Pipeline. Astronomy and Computing, 2015, 11, 25-48.	1.7	66
41	A MILLISECOND INTERFEROMETRIC SEARCH FOR FAST RADIO BURSTS WITH THE VERY LARGE ARRAY. Astrophysical Journal, 2015, 807, 16.	4.5	54
42	THE INTRINSIC TWO-DIMENSIONAL SIZE OF SAGITTARIUS A*. Astrophysical Journal, 2014, 790, 1.	4.5	50
43	The LOFAR pilot surveys for pulsars and fast radio transients. Astronomy and Astrophysics, 2014, 570, A60.	5.1	89
44	VAST: An ASKAP Survey for Variables and Slow Transients. Publications of the Astronomical Society of Australia, 2013, 30, .	3.4	88
45	ASGARD: A LARGE SURVEY FOR SLOW GALACTIC RADIO TRANSIENTS. I. OVERVIEW AND FIRST RESULTS. Astrophysical Journal, 2013, 762, 85.	4.5	18
46	LOFAR detections of low-frequency radio recombination lines towards Cassiopeia A. Astronomy and Astrophysics, 2013, 551, L11.	5.1	13
47	LOFAR: The LOw-Frequency ARray. Astronomy and Astrophysics, 2013, 556, A2.	5.1	1,755
48	Wide-band simultaneous observations of pulsars: disentangling dispersion measure and profile variations. Astronomy and Astrophysics, 2012, 543, A66.	5.1	76
49	THE RRAT TRAP: INTERFEROMETRIC LOCALIZATION OF RADIO PULSES FROM J0628+0909. Astrophysical Journal, 2012, 760, 124.	4.5	7
50	ALL TRANSIENTS, ALL THE TIME: REAL-TIME RADIO TRANSIENT DETECTION WITH INTERFEROMETRIC CLOSURE QUANTITIES. Astrophysical Journal, 2012, 749, 143.	4.5	19
51	Rapid Development of Interferometric Software Using MIRIAD and Python. Publications of the Astronomical Society of the Pacific, 2012, 124, 624-636.	3.1	7
52	Primary Beam and Dish Surface Characterization at the Allen Telescope Array by Radio Holography. IEEE Transactions on Antennas and Propagation, 2011, 59, 2004-2021.	5.1	20
53	THE ALLEN TELESCOPE ARRAY TWENTY-CENTIMETER SURVEY—A 700-SQUARE-DEGREE, MULTI-EPOCH RADIO DATA SET. II. INDIVIDUAL EPOCH TRANSIENT STATISTICS. Astrophysical Journal, 2011, 731, 34.	4.5	34
54	Observing pulsars and fast transients with LOFAR. Astronomy and Astrophysics, 2011, 530, A80.	5.1	185

#	Article	IF	CITATIONS
55	THE ALLEN TELESCOPE ARRAY PI GHz SKY SURVEY II. DAILY AND MONTHLY MONITORING FOR TRANSIENTS AND VARIABILITY IN THE BO×TES FIELD. Astrophysical Journal, 2011, 739, 76.	4.5	19
56	Wild at Heart: the particle astrophysics of the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2011, 413, 763-788.	4.4	105
57	An automated archival Very Large Array transients survey. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2-10.	4.4	34
58	THE ALLEN TELESCOPE ARRAY Pi GHz SKY SURVEY. I. SURVEY DESCRIPTION AND STATIC CATALOG RESULTS FOR THE BO×TES FIELD. Astrophysical Journal, 2010, 725, 1792-1804.	4.5	28
59	THE ALLEN TELESCOPE ARRAY TWENTY-CENTIMETER SURVEY—A 690 DEG ² , 12 EPOCH RADIO DATA SET. I. CATALOG AND LONG-DURATION TRANSIENT STATISTICS. Astrophysical Journal, 2010, 719, 45-58.	4.5	50
60	Primary-Beam Shape Calibration from Mosaicked, Interferometric Observations. Publications of the Astronomical Society of the Pacific, 2010, 122, 1510-1517.	3.1	3
61	X-Ray Observations of the Sagittarius D H <scp>ii</scp> Region toward the Galactic Center with Suzaku. Publication of the Astronomical Society of Japan, 2009, 61, S209-S218.	2.5	15
62	A CATALOG OF X-RAY POINT SOURCES FROM TWO MEGASECONDS OF <i>CHANDRA</i> OBSERVATIONS OF THE GALACTIC CENTER. Astrophysical Journal, Supplement Series, 2009, 181, 110-128.	7.7	147
63	Comparison of 3.6–8.0 μmSpitzer/IRAC Galactic Center Survey Point Sources withChandraXâ€Ray Point Sources in the Central 40 × 40 Parsecs. Astrophysical Journal, 2008, 685, 958-970.	4.5	4
64	The Midâ€Infrared Colors of the Interstellar Medium and Extended Sources at the Galactic Center. Astrophysical Journal, 2008, 682, 384-399.	4.5	18
65	The Cool Supergiant Population of the Massive Young Star Cluster RSGC1. Astrophysical Journal, 2008, 676, 1016-1028.	4.5	97
66	Evidence for a Mass Outflow from Our Galactic Center. Proceedings of the International Astronomical Union, 2007, 3, 407-412.	0.0	0
67	A Neutron Star with a Massive Progenitor in Westerlund 1. Astrophysical Journal, 2006, 636, L41-L44.	4.5	207
68	A mid-infrared survey of the inner 2 × 1.5 degrees of the Galaxy with Spitzer/IRAC. Journal of Physics: Conference Series, 2006, 54, 176-182.	0.4	59
69	The Stellar Population in the Galactic Center: Insights from theSpitzer Space Telescope. Journal of Physics: Conference Series, 2006, 54, 183-189.	0.4	3
70	Diffuse, Nonthermal Xâ€Ray Emission from the Galactic Star Cluster Westerlund 1. Astrophysical Journal, 2006, 650, 203-211.	4.5	65
71	Comparison of Spitzer/IRAC Galactic Center 3.6-8.0 μum survey results with X-ray emission in the central 40 × 40 parsecs. Journal of Physics: Conference Series, 2006, 54, 171-175.	0.4	2
72	The nature of nonthermal X-ray filaments near the galactic center. Advances in Space Research, 2005, 35, 1074-1084.	2.6	23

#	Article	IF	CITATIONS
73	Xâ€Ray Observations of Stellar Clusters Near the Galactic Center. Astrophysical Journal, 2004, 611, 858-870.	4.5	50
74	X-ray Emission from Stellar Clusters Near the Galactic Center. Astronomische Nachrichten, 2003, 324, 271-277.	1.2	1
75	Nonthermal Emission from the Arches Cluster (G0.121+0.017) and the Origin of -ray Emission from 3EG J1746-2851. Astrophysical Journal, 2003, 590, L103-L106.	4.5	24
76	Detection of Xâ€Ray Emission from the Arches Cluster near the Galactic Center. Astrophysical Journal, 2002, 570, 665-670.	4.5	107
77	The Origin of X-Ray Emission from a Galactic Center Molecular Cloud: Low-Energy Cosmic-Ray Electrons. Astrophysical Journal, 2002, 568, L121-L125.	4.5	67
78	A Comparison of 13CO and CS Emission in the Inner Galaxy. Astrophysical Journal, 2002, 576, 274-284.	4.5	15