Philippe D Gascard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/436757/publications.pdf

Version: 2024-02-01

48 papers 11,037 citations

172457 29 h-index 223800 46 g-index

48 all docs

48 docs citations

times ranked

48

25519 citing authors

#	Article	IF	CITATIONS
1	Stromal directives can control cancer. Science, 2019, 365, 122-123.	12.6	19
2	Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes and Development, 2016, 30, 1002-1019.	5 . 9	579
3	SOX2, OCT3/4 and NANOG expression and cellular plasticity in rare human somatic cells requires CD73. Cellular Signalling, 2016, 28, 1923-1932.	3.6	7
4	Novel insights from 3D models: the pivotal role of physical symmetry in epithelial organization. Scientific Reports, 2015 , 5 , 15153 .	3.3	8
5	Intermediate DNA methylation is a conserved signature of genome regulation. Nature Communications, 2015, 6, 6363.	12.8	91
6	Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518, 317-330.	27.8	5,653
7	Epigenetic and transcriptional determinants of the human breast. Nature Communications, 2015, 6, 6351.	12.8	56
8	Towards aspirin-inspired self-immolating molecules which target the cyclooxygenases. Organic and Biomolecular Chemistry, 2015, 13, 11078-11086.	2.8	0
9	Regulatory network decoded from epigenomes of surface ectoderm-derived cell types. Nature Communications, 2014, 5, 5442.	12.8	25
10	Phosphatidylinositol-4,5 bisphosphate (PIP2) inhibits apo-calmodulin binding to protein 4.1. Biochemical and Biophysical Research Communications, 2014, 446, 434-440.	2.1	3
11	Coordinate Transcriptional and Translational Repression of p53 by TGF- \hat{l}^21 Impairs the Stress Response. Molecular Cell, 2013, 50, 552-564.	9.7	42
12	DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nature Genetics, 2013, 45, 836-841.	21.4	207
13	Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Research, 2013, 23, 1522-1540.	5 . 5	162
14	A physical sciences network characterization of non-tumorigenic and metastatic cells. Scientific Reports, 2013, 3, 1449.	3. 3	146
15	Rare somatic cells from human breast tissue exhibit extensive lineage plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4598-4603.	7.1	83
16	Characterization of cytoskeletal protein 4.1R interaction with NHE1 (Na+/H+ exchanger isoform 1). Biochemical Journal, 2012, 446, 427-435.	3.7	17
17	The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 2012, 486, 395-399.	27.8	1,778
18	Isoforms of protein 4.1 are differentially distributed in heart muscle cells: Relation of 4.1R and 4.1G to components of the Ca2+ homeostasis system. Experimental Cell Research, 2012, 318, 1467-1479.	2.6	15

#	Article	IF	Citations
19	Insights into the Function of the Unstructured N-Terminal Domain of Proteins 4.1R and 4.1G in Erythropoiesis. International Journal of Cell Biology, 2011, 2011, 1-13.	2.5	9
20	Similarities and differences in the structure and function of 4.1G and 4.1R135, two protein 4.1 paralogues expressed in erythroid cells. Biochemical Journal, 2010, 432, 407-416.	3.7	9
21	Basal Subtype and MAPK/ERK Kinase (MEK)-Phosphoinositide 3-Kinase Feedback Signaling Determine Susceptibility of Breast Cancer Cells to MEK Inhibition. Cancer Research, 2009, 69, 565-572.	0.9	340
22	lonizing Radiation Predisposes Nonmalignant Human Mammary Epithelial Cells to Undergo Transforming Growth Factor β–Induced Epithelial to Mesenchymal Transition. Cancer Research, 2007, 67, 8662-8670.	0.9	155
23	New insights into potential functions for the protein 4.1 superfamily of proteins in kidney epithelium. Frontiers in Bioscience - Landmark, 2006, 11, 1646.	3.0	19
24	Effect of complete protein 4.1R deficiency on ion transport properties of murine erythrocytes. American Journal of Physiology - Cell Physiology, 2006, 291, C880-C886.	4.6	23
25	Evidence for a protective role of the Gardos channel against hemolysis in murine spherocytosis. Blood, 2005, 106, 1454-1459.	1.4	29
26	Development of a targeted transgenesis strategy in highly differentiated cells: a powerful tool for functional genomic analysis. Journal of Biotechnology, 2005, 116, 145-151.	3.8	7
27	Putative tumor suppressor protein 4.1B is differentially expressed in kidney and brain via alternative promoters and $5a \in 2$ alternative splicing. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1680, 71-82.	2.4	15
28	Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
29	Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney International, 2003, 63, 1321-1337.	5.2	50
30	Identification of a third Protein 4.1 tumor suppressor, Protein 4.1R, in meningioma pathogenesis. Neurobiology of Disease, 2003, 13, 191-202.	4.4	78
31	What do mouse gene knockouts tell us about the structure and function of the red cell membrane?. Best Practice and Research in Clinical Haematology, 2001, 14, 835.	1.7	0
32	Structural and Functional Characterization of Protein 4.1R-Phosphatidylserine Interaction. Journal of Biological Chemistry, 2001, 276, 35778-35785.	3.4	42
33	New insights into functions of erythroid proteins in nonerythroid cells. Current Opinion in Hematology, 2000, 7, 123-129.	2.5	48
34	Molecular and Functional Characterization of Protein 4.1B, a Novel Member of the Protein 4.1 Family with High Level, Focal Expression in Brain. Journal of Biological Chemistry, 2000, 275, 3247-3255.	3.4	114
35	Deciphering the Nuclear Import Pathway for the Cytoskeletal Red Cell Protein 4.1R. Molecular Biology of the Cell, 1999, 10, 1783-1798.	2.1	40
36	What do mouse gene knockouts tell us about the structure and function of the red cell membrane?. Best Practice and Research in Clinical Haematology, 1999, 12, 605-620.	1.7	13

#	Article	IF	CITATIONS
37	Neurobehavioral deficits in mice lacking the erythrocyte membrane cytoskeletal protein 4.1. Current Biology, 1998, 8, 1269-S1.	3.9	47
38	The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends in Biochemical Sciences, 1998, 23, 281-282.	7.5	494
39	Cloning and Characterization of 4.1G (EPB41L2), a New Member of the Skeletal Protein 4.1 (EPB41) Gene Family. Genomics, 1998, 49, 298-306.	2.9	103
40	Identification of an Interaction between the M-band Protein Skelemin and \hat{l}^2 -Integrin Subunits. Journal of Biological Chemistry, 1998, 273, 35039-35047.	3.4	38
41	The 13-kD FK506 Binding Protein, FKBP13, Interacts with a Novel Homologue of the Erythrocyte Membrane Cytoskeletal Protein 4.1. Journal of Cell Biology, 1998, 141, 143-153.	5 . 2	122
42	Structural Protein 4.1 in the Nucleus of Human Cells: Dynamic Rearrangements during Cell Division. Journal of Cell Biology, 1997, 137, 275-289.	5.2	107
43	The role of inositol phospholipids in the association of band 4.1 with the human erythrocyte membrane. FEBS Journal, 1993, 211, 671-681.	0.2	31
44	Cellular distribution of polyphosphoinositides in rat hepatocytes. Cellular Signalling, 1993, 5, 565-581.	3.6	55
45	Characterization of structural and functional phosphoinositide domains in human erythrocyte membranes. Biochemistry, 1993, 32, 5941-5948.	2.5	23
46	Asymmetric distribution of phosphoinositides and phosphatidic acid in the human erythrocyte membrane. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1069, 27-36.	2.6	79
47	The separation of [32P] inositol phosphates by ion-pair chromatography: Optimization of the method and biological applications. Analytical Biochemistry, 1989, 179, 90-97.	2.4	24
48	Polyphosphoinositide localization in human erythrocyte membranes. Biochemical Society Transactions, 1989, 17, 717-718.	3.4	1