Philippe D Gascard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/436757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518, 317-330.	27.8	5,653
2	The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 2012, 486, 395-399.	27.8	1,778
3	Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes and Development, 2016, 30, 1002-1019.	5.9	579
4	The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends in Biochemical Sciences, 1998, 23, 281-282.	7.5	494
5	Basal Subtype and MAPK/ERK Kinase (MEK)-Phosphoinositide 3-Kinase Feedback Signaling Determine Susceptibility of Breast Cancer Cells to MEK Inhibition. Cancer Research, 2009, 69, 565-572.	0.9	340
6	DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nature Genetics, 2013, 45, 836-841.	21.4	207
7	Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Research, 2013, 23, 1522-1540.	5.5	162
8	Ionizing Radiation Predisposes Nonmalignant Human Mammary Epithelial Cells to Undergo Transforming Growth Factor β–Induced Epithelial to Mesenchymal Transition. Cancer Research, 2007, 67, 8662-8670.	0.9	155
9	A physical sciences network characterization of non-tumorigenic and metastatic cells. Scientific Reports, 2013, 3, 1449.	3.3	146
10	The 13-kD FK506 Binding Protein, FKBP13, Interacts with a Novel Homologue of the Erythrocyte Membrane Cytoskeletal Protein 4.1. Journal of Cell Biology, 1998, 141, 143-153.	5.2	122
11	Molecular and Functional Characterization of Protein 4.1B, a Novel Member of the Protein 4.1 Family with High Level, Focal Expression in Brain. Journal of Biological Chemistry, 2000, 275, 3247-3255.	3.4	114
12	Structural Protein 4.1 in the Nucleus of Human Cells: Dynamic Rearrangements during Cell Division. Journal of Cell Biology, 1997, 137, 275-289.	5.2	107
13	Cloning and Characterization of 4.1G (EPB41L2), a New Member of the Skeletal Protein 4.1 (EPB41) Gene Family. Genomics, 1998, 49, 298-306.	2.9	103
14	Intermediate DNA methylation is a conserved signature of genome regulation. Nature Communications, 2015, 6, 6363.	12.8	91
15	Rare somatic cells from human breast tissue exhibit extensive lineage plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4598-4603.	7.1	83
16	Asymmetric distribution of phosphoinositides and phosphatidic acid in the human erythrocyte membrane. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1069, 27-36.	2.6	79
17	Identification of a third Protein 4.1 tumor suppressor, Protein 4.1R, in meningioma pathogenesis. Neurobiology of Disease, 2003, 13, 191-202.	4.4	78
18	Epigenetic and transcriptional determinants of the human breast. Nature Communications, 2015, 6, 6351	12.8	56

PHILIPPE D GASCARD

#	Article	IF	CITATIONS
19	Cellular distribution of polyphosphoinositides in rat hepatocytes. Cellular Signalling, 1993, 5, 565-581.	3.6	55
20	Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney International, 2003, 63, 1321-1337.	5.2	50
21	New insights into functions of erythroid proteins in nonerythroid cells. Current Opinion in Hematology, 2000, 7, 123-129.	2.5	48
22	Neurobehavioral deficits in mice lacking the erythrocyte membrane cytoskeletal protein 4.1. Current Biology, 1998, 8, 1269-S1.	3.9	47
23	Structural and Functional Characterization of Protein 4.1R-Phosphatidylserine Interaction. Journal of Biological Chemistry, 2001, 276, 35778-35785.	3.4	42
24	Coordinate Transcriptional and Translational Repression of p53 by TGF-β1 Impairs the Stress Response. Molecular Cell, 2013, 50, 552-564.	9.7	42
25	Deciphering the Nuclear Import Pathway for the Cytoskeletal Red Cell Protein 4.1R. Molecular Biology of the Cell, 1999, 10, 1783-1798.	2.1	40
26	Identification of an Interaction between the M-band Protein Skelemin and β-Integrin Subunits. Journal of Biological Chemistry, 1998, 273, 35039-35047.	3.4	38
27	The role of inositol phospholipids in the association of band 4.1 with the human erythrocyte membrane. FEBS Journal, 1993, 211, 671-681.	0.2	31
28	Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
29	Evidence for a protective role of the Gardos channel against hemolysis in murine spherocytosis. Blood, 2005, 106, 1454-1459.	1.4	29
30	Regulatory network decoded from epigenomes of surface ectoderm-derived cell types. Nature Communications, 2014, 5, 5442.	12.8	25
31	The separation of [32P] inositol phosphates by ion-pair chromatography: Optimization of the method and biological applications. Analytical Biochemistry, 1989, 179, 90-97.	2.4	24
32	Characterization of structural and functional phosphoinositide domains in human erythrocyte membranes. Biochemistry, 1993, 32, 5941-5948.	2.5	23
33	Effect of complete protein 4.1R deficiency on ion transport properties of murine erythrocytes. American Journal of Physiology - Cell Physiology, 2006, 291, C880-C886.	4.6	23
34	New insights into potential functions for the protein 4.1 superfamily of proteins in kidney epithelium. Frontiers in Bioscience - Landmark, 2006, 11, 1646.	3.0	19
35	Stromal directives can control cancer. Science, 2019, 365, 122-123.	12.6	19
36	Characterization of cytoskeletal protein 4.1R interaction with NHE1 (Na+/H+ exchanger isoform 1). Biochemical Journal, 2012, 446, 427-435.	3.7	17

PHILIPPE D GASCARD

#	Article	IF	CITATIONS
37	Putative tumor suppressor protein 4.1B is differentially expressed in kidney and brain via alternative promoters and 5′ alternative splicing. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1680, 71-82.	2.4	15
38	Isoforms of protein 4.1 are differentially distributed in heart muscle cells: Relation of 4.1R and 4.1G to components of the Ca2+ homeostasis system. Experimental Cell Research, 2012, 318, 1467-1479.	2.6	15
39	What do mouse gene knockouts tell us about the structure and function of the red cell membrane?. Best Practice and Research in Clinical Haematology, 1999, 12, 605-620.	1.7	13
40	Similarities and differences in the structure and function of 4.1G and 4.1R135, two protein 4.1 paralogues expressed in erythroid cells. Biochemical Journal, 2010, 432, 407-416.	3.7	9
41	Insights into the Function of the Unstructured N-Terminal Domain of Proteins 4.1R and 4.1G in Erythropoiesis. International Journal of Cell Biology, 2011, 2011, 1-13.	2.5	9
42	Novel insights from 3D models: the pivotal role of physical symmetry in epithelial organization. Scientific Reports, 2015, 5, 15153.	3.3	8
43	Development of a targeted transgenesis strategy in highly differentiated cells: a powerful tool for functional genomic analysis. Journal of Biotechnology, 2005, 116, 145-151.	3.8	7
44	SOX2, OCT3/4 and NANOG expression and cellular plasticity in rare human somatic cells requires CD73. Cellular Signalling, 2016, 28, 1923-1932.	3.6	7
45	Phosphatidylinositol-4,5 bisphosphate (PIP2) inhibits apo-calmodulin binding to protein 4.1. Biochemical and Biophysical Research Communications, 2014, 446, 434-440.	2.1	3
46	Polyphosphoinositide localization in human erythrocyte membranes. Biochemical Society Transactions, 1989, 17, 717-718.	3.4	1
47	What do mouse gene knockouts tell us about the structure and function of the red cell membrane?. Best Practice and Research in Clinical Haematology, 2001, 14, 835.	1.7	0
48	Towards aspirin-inspired self-immolating molecules which target the cyclooxygenases. Organic and Biomolecular Chemistry, 2015, 13, 11078-11086.	2.8	0