Michael R Zachariah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4366183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359, 1489-1494.	12.6	1,065
2	Uniform Nano-Sn/C Composite Anodes for Lithium Ion Batteries. Nano Letters, 2013, 13, 470-474.	9.1	531
3	Interdispersed Amorphous MnO _{<i>x</i>} –Carbon Nanocomposites with Superior Electrochemical Performance as Lithiumâ€Storage Material. Advanced Functional Materials, 2012, 22, 803-811.	14.9	376
4	Adsorption and Conformation of Serum Albumin Protein on Gold Nanoparticles Investigated Using Dimensional Measurements and in Situ Spectroscopic Methods. Langmuir, 2011, 27, 2464-2477.	3.5	359
5	Extremely stable antimony–carbon composite anodes for potassium-ion batteries. Energy and Environmental Science, 2019, 12, 615-623.	30.8	358
6	High temperature shockwave stabilized single atoms. Nature Nanotechnology, 2019, 14, 851-857.	31.5	278
7	Measurement of Inherent Material Density of Nanoparticle Agglomerates. Journal of Nanoparticle Research, 2004, 6, 267-272.	1.9	263
8	Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids. Chemistry of Materials, 2005, 17, 2987-2996.	6.7	207
9	Assembly and reactive properties of Al/CuO based nanothermite microparticles. Combustion and Flame, 2014, 161, 2203-2208.	5.2	176
10	Combustion characteristics of boron nanoparticles. Combustion and Flame, 2009, 156, 322-333.	5.2	174
11	Crumpled Nanopaper from Graphene Oxide. Nano Letters, 2012, 12, 486-489.	9.1	160
12	Mn ₃ O ₄ hollow spheres for lithium-ion batteries with high rate and capacity. Journal of Materials Chemistry A, 2014, 2, 4627-4632.	10.3	155
13	Enhancing the Rate of Energy Release from NanoEnergetic Materials by Electrostatically Enhanced Assembly. Advanced Materials, 2004, 16, 1821-1825.	21.0	153
14	Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition?. Combustion and Flame, 2013, 160, 432-437.	5.2	149
15	Probing the Reaction Mechanism of Aluminum/Poly(vinylidene fluoride) Composites. Journal of Physical Chemistry B, 2016, 120, 5534-5542.	2.6	145
16	FeS ₂ Nanoparticles Embedded in Reduced Graphene Oxide toward Robust, Highâ€₽erformance Electrocatalysts. Advanced Energy Materials, 2017, 7, 1700482.	19.5	144
17	Importance of Phase Change of Aluminum in Oxidation of Aluminum Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 14793-14795.	2.6	138
18	Transient, <i>in situ</i> synthesis of ultrafine ruthenium nanoparticles for a high-rate Li–CO ₂ battery. Energy and Environmental Science, 2019, 12, 1100-1107.	30.8	129

#	Article	IF	CITATIONS
19	Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites. Combustion and Flame, 2019, 201, 181-186.	5.2	127
20	Superior electrochemical performance and structure evolution of mesoporous Fe2O3 anodes for lithium-ion batteries. Nano Energy, 2014, 3, 26-35.	16.0	124
21	Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nature Communications, 2016, 7, 12332.	12.8	123
22	Size-Selected Nanoparticle Chemistry:  Kinetics of Soot Oxidation. Journal of Physical Chemistry A, 2002, 106, 96-103.	2.5	121
23	Electrospray Deposition of Energetic Polymer Nanocomposites with High Mass Particle Loadings: A Prelude to 3D Printing of Rocket Motors. Advanced Engineering Materials, 2015, 17, 95-101.	3.5	121
24	Recent Progress on Spray Pyrolysis for High Performance Electrode Materials in Lithium and Sodium Rechargeable Batteries. Advanced Energy Materials, 2017, 7, 1601578.	19.5	120
25	Determination of protein aggregation with differential mobility analysis: Application to IgG antibody. Biotechnology and Bioengineering, 2008, 101, 1214-1222.	3.3	113
26	Do nanoenergetic particles remain nano-sized during combustion?. Combustion and Flame, 2014, 161, 1408-1416.	5.2	111
27	Diffusive vs Explosive Reaction at the Nanoscale. Journal of Physical Chemistry C, 2010, 114, 9191-9195.	3.1	109
28	Enhanced reactivity of nano-B/Al/CuO MIC's. Combustion and Flame, 2009, 156, 302-309.	5.2	108
29	Density measurement of size selected multiwalled carbon nanotubes by mobility-mass characterization. Carbon, 2009, 47, 1297-1302.	10.3	107
30	Quantitative characterization of virusâ€like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy. Biotechnology and Bioengineering, 2009, 102, 845-855.	3.3	104
31	Electrospun Nanofiber-Based Thermite Textiles and their Reactive Properties. ACS Applied Materials & Interfaces, 2012, 4, 6432-6435.	8.0	103
32	Superâ€reactive Nanoenergetic Gas Generators Based on Periodate Salts. Angewandte Chemie - International Edition, 2013, 52, 9743-9746.	13.8	103
33	Electrospray Formation of Gelled Nano-Aluminum Microspheres with Superior Reactivity. ACS Applied Materials & Interfaces, 2013, 5, 6797-6801.	8.0	101
34	Synthesis and Reactivity of a Super-Reactive Metastable Intermolecular Composite Formulation of Al/KMnO4. Advanced Materials, 2005, 17, 900-903.	21.0	92
35	Facile Aerosol Route to Hollow CuO Spheres and its Superior Performance as an Oxidizer in Nanoenergetic Gas Generators. Advanced Functional Materials, 2013, 23, 1341-1346.	14.9	90
36	Tâ€Jump/timeâ€ofâ€flight mass spectrometry for timeâ€resolved analysis of energetic materials. Rapid Communications in Mass Spectrometry, 2009, 23, 194-202.	1.5	88

Michael R Zachariah

#	Article	IF	CITATIONS
37	Direct Deposit Laminate Nanocomposites with Enhanced Propellent Properties. ACS Applied Materials & Interfaces, 2015, 7, 9103-9109.	8.0	87
38	Assembly and encapsulation of aluminum NP's within AP/NC matrix and their reactive properties. Combustion and Flame, 2017, 180, 175-183.	5.2	87
39	Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids. Physical Review E, 2010, 81, 011406.	2.1	85
40	Dependence of Soot Optical Properties on Particle Morphology: Measurements and Model Comparisons. Environmental Science & Technology, 2014, 48, 3169-3176.	10.0	85
41	Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Research, 2019, 12, 2259-2267.	10.4	85
42	Ignition and Combustion Characteristics of Nanoscale Al/AgIO ₃ : A Potential Energetic Biocidal System. Combustion Science and Technology, 2010, 183, 285-302.	2.3	82
43	Synthesis and reactivity of nano-Ag2O as an oxidizer for energetic systems yielding antimicrobial products. Combustion and Flame, 2013, 160, 438-446.	5.2	82
44	Time-Resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study. Journal of Physical Chemistry C, 2012, 116, 26881-26887.	3.1	81
45	Electrospray–differential mobility analysis of bionanoparticles. Trends in Biotechnology, 2012, 30, 291-300.	9.3	80
46	In Situ "Chainmail Catalyst―Assembly in Lowâ€Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation. Advanced Energy Materials, 2018, 8, 1801289.	19.5	79
47	On the role of built-in electric fields on the ignition of oxide coated nanoaluminum: Ion mobility versus Fickian diffusion. Journal of Applied Physics, 2010, 107, .	2.5	78
48	Aerosol Synthesis of High Entropy Alloy Nanoparticles. Langmuir, 2020, 36, 1985-1992.	3.5	74
49	Soot aggregate restructuring during water processing. Journal of Aerosol Science, 2013, 66, 209-219.	3.8	73
50	Quantitative laser-induced breakdown spectroscopy for aerosols via internal calibration: Application to the oxidative coating of aluminum nanoparticles. Journal of Aerosol Science, 2006, 37, 677-695.	3.8	71
51	Competitive Adsorption of Thiolated Polyethylene Glycol and Mercaptopropionic Acid on Gold Nanoparticles Measured by Physical Characterization Methods. Langmuir, 2010, 26, 10325-10333.	3.5	71
52	<i>In Situ</i> Oxidation Studies of High-Entropy Alloy Nanoparticles. ACS Nano, 2020, 14, 15131-15143.	14.6	71
53	Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 404-411.	3.1	69
54	Electrospray formation and combustion characteristics of iodine-containing Al/CuO nanothermite microparticles. Combustion and Flame, 2015, 162, 2823-2829.	5.2	68

#	Article	IF	CITATIONS
55	Kinetics of Diesel Nanoparticle Oxidation. Environmental Science & amp; Technology, 2003, 37, 1949-1954.	10.0	67
56	Photoacoustic Measurements of Amplification of the Absorption Cross Section for Coated Soot Aerosols. Aerosol Science and Technology, 2011, 45, 1217-1230.	3.1	67
57	Energy release pathways in nanothermites follow through the condensed state. Combustion and Flame, 2015, 162, 258-264.	5.2	67
58	Characterization of metal-bearing diesel nanoparticles using single-particle mass spectrometry. Journal of Aerosol Science, 2006, 37, 88-110.	3.8	66
59	Encapsulation of Perchlorate Salts within Metal Oxides for Application as Nanoenergetic Oxidizers. Advanced Functional Materials, 2012, 22, 78-85.	14.9	65
60	Synthesis of Metal Oxide Nanoparticles by Rapid, Highâ€Temperature 3D Microwave Heating. Advanced Functional Materials, 2019, 29, 1904282.	14.9	65
61	Nano-structured carbon-coated CuO hollow spheres as stable and high rate anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 15486.	10.3	64
62	<i>In situ</i> imaging of ultra-fast loss of nanostructure in nanoparticle aggregates. Journal of Applied Physics, 2014, 115, .	2.5	64
63	Application of Nanoâ€Aluminum/Nitrocellulose Mesoparticles in Composite Solid Rocket Propellants. Propellants, Explosives, Pyrotechnics, 2015, 40, 413-418.	1.6	63
64	Direct Writing of a 90 wt% Particle Loading Nanothermite. Advanced Materials, 2019, 31, e1806575.	21.0	63
65	Quantifying the Surface Coverage of Conjugate Molecules on Functionalized Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 17155-17157.	3.1	62
66	Characterizing the coating and size-resolved oxidative stability of carbon-coated aluminum nanoparticles by single-particle mass-spectrometry. Journal of Nanoparticle Research, 2006, 8, 455-464.	1.9	60
67	In situ microscopy of rapidly heated nano-Al and nano-Al/WO3 thermites. Applied Physics Letters, 2010, 97, 133104.	3.3	59
68	High speed 2-dimensional temperature measurements of nanothermite composites: Probing thermal vs. Gas generation effects. Journal of Applied Physics, 2018, 123, .	2.5	59
69	Enhanced Performance of Alkali Metal Doped Fe ₂ O ₃ and Fe ₂ O ₃ /Al ₂ O ₃ Composites As Oxygen Carrier Material in Chemical Looping Combustion. Energy & Fuels, 2013, 27, 4977-4983.	5.1	58
70	Uniform, Scalable, High-Temperature Microwave Shock for Nanoparticle Synthesis through Defect Engineering. Matter, 2019, 1, 759-769.	10.0	58
71	Molecular dynamic simulation of dicarboxylic acid coated aqueous aerosol: structure and processing of water vapor. Physical Chemistry Chemical Physics, 2011, 13, 9374.	2.8	54
72	Reaction mechanism of Al-CuO nanothermites with addition of multilayer graphene. Thermochimica Acta, 2018, 666, 60-65.	2.7	54

#	Article	IF	CITATIONS
73	Adsorption and Destruction of the G-Series Nerve Agent Simulant Dimethyl Methylphosphonate on Zinc Oxide. ACS Catalysis, 2019, 9, 902-911.	11.2	54
74	Probing the Nucleus Model for Oligomer Formation during Insulin Amyloid Fibrillogenesis. Biophysical Journal, 2010, 99, 3979-3985.	0.5	53
75	Synergistically Chemical and Thermal Coupling between Graphene Oxide and Graphene Fluoride for Enhancing Aluminum Combustion. ACS Applied Materials & Interfaces, 2020, 12, 7451-7458.	8.0	52
76	Rapid, high-temperature microwave soldering toward a high-performance cathode/electrolyte interface. Energy Storage Materials, 2020, 30, 385-391.	18.0	51
77	Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials. Environmental Science & Technology, 2016, 50, 7982-7990.	10.0	49
78	Commentary on the heat transfer mechanisms controlling propagation in nanothermites. Combustion and Flame, 2015, 162, 2959-2961.	5.2	48
79	Spectroscopic and Computational Investigation of Room-Temperature Decomposition of a Chemical Warfare Agent Simulant on Polycrystalline Cupric Oxide. Chemistry of Materials, 2017, 29, 7483-7496.	6.7	48
80	Boron ignition and combustion with doped δ-Bi2O3: Bond energy/oxygen vacancy relationships. Combustion and Flame, 2018, 197, 127-133.	5.2	48
81	Molecular dynamics simulation of the kinetic sintering of Ni and Al nanoparticles. Molecular Simulation, 2009, 35, 804-811.	2.0	47
82	Probing the Reaction Dynamics of Thermite Nanolaminates. Journal of Physical Chemistry C, 2015, 119, 20401-20408.	3.1	47
83	In-operando high-speed microscopy and thermometry of reaction propagation and sintering in a nanocomposite. Nature Communications, 2019, 10, 3032.	12.8	47
84	Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles. Combustion and Flame, 2016, 167, 472-480.	5.2	46
85	Low Effective Activation Energies for Oxygen Release from Metal Oxides: Evidence for Massâ€Transfer Limits at High Heating Rates. ChemPhysChem, 2014, 15, 1666-1672.	2.1	44
86	Nanoaluminum/Nitrocellulose microparticle additive for burn enhancement of liquid fuels. Combustion and Flame, 2017, 176, 220-228.	5.2	43
87	Continuous 2000â€ [–] K droplet-to-particle synthesis. Materials Today, 2020, 35, 106-114.	14.2	43
88	Crystalline Phase Reduction of Cuprous Oxide (Cu ₂ O) Nanoparticles Accompanied by a Morphology Change during Ethanol-Assisted Spray Pyrolysis. Langmuir, 2009, 25, 7063-7071.	3.5	42
89	Passivated Iodine Pentoxide Oxidizer for Potential Biocidal Nanoenergetic Applications. ACS Applied Materials & Interfaces, 2013, 5, 8875-8880.	8.0	42
90	Time-Resolved Nanosecond Imaging of Nanoscale Condensed Phase Reaction. Journal of Physical Chemistry C, 2015, 119, 2792-2797.	3.1	42

Michael R Zachariah

#	Article	IF	CITATIONS
91	Persulfate salt as an oxidizer for biocidal energetic nano-thermites. Journal of Materials Chemistry A, 2015, 3, 11838-11846.	10.3	42
92	Understanding ion-mobility and transport properties of aerosol nanowires. Journal of Aerosol Science, 2007, 38, 823-842.	3.8	41
93	Tumor necrosis factor interaction with gold nanoparticles. Nanoscale, 2012, 4, 3208.	5.6	41
94	Controlling the energetic characteristics of micro energy storage device by in situ deposition Al/MoO3 nanolaminates with varying internal structure. Chemical Engineering Journal, 2019, 373, 345-354.	12.7	41
95	Length Distribution of Singleâ€Walled Carbon Nanotubes in Aqueous Suspension Measured by Electrospray Differential Mobility Analysis. Small, 2009, 5, 2894-2901.	10.0	40
96	Sticking Coefficient and Processing of Water Vapor on Organic-Coated Nanoaerosols. Journal of Physical Chemistry A, 2008, 112, 966-972.	2.5	39
97	Method for Determining the Absolute Number Concentration of Nanoparticles from Electrospray Sources. Langmuir, 2011, 27, 14732-14739.	3.5	39
98	Packing density of rigid aggregates is independent of scale. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9037-9041.	7.1	39
99	Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF films. Combustion and Flame, 2020, 211, 260-269.	5.2	39
100	Hierarchical Polyelemental Nanoparticles as Bifunctional Catalysts for Oxygen Evolution and Reduction Reactions. Advanced Energy Materials, 2020, 10, 2001119.	19.5	39
101	Combustion of 3D printed 90Âwt% loading reinforced nanothermite. Combustion and Flame, 2020, 215, 86-92.	5.2	39
102	Initiation and Reaction in Al/Bi ₂ O ₃ Nanothermites: Evidence for the Predominance of Condensed Phase Chemistry. Combustion Science and Technology, 2014, 186, 1209-1224.	2.3	38
103	Packing and Size Determination of Colloidal Nanoclusters. Langmuir, 2010, 26, 11384-11390.	3.5	37
104	Titanium enhanced ignition and combustion of Al/I2O5 mesoparticle composites. Combustion and Flame, 2020, 212, 245-251.	5.2	37
105	Ion-Mobility Spectrometry of Nickel Nanoparticle Oxidation Kinetics: Application to Energetic Materials. Journal of Physical Chemistry C, 2008, 112, 16209-16218.	3.1	36
106	Controlled Formation and Characterization of Dithiothreitol-Conjugated Gold Nanoparticle Clusters. Langmuir, 2014, 30, 3397-3405.	3.5	36
107	Architecture Can Significantly Alter the Energy Release Rate from Nanocomposite Energetics. ACS Applied Polymer Materials, 2019, 1, 982-989.	4.4	36
108	Stabilized microparticle aggregates of oxygen-containing nanoparticles in kerosene for enhanced droplet combustion. Combustion and Flame, 2018, 187, 77-86.	5.2	35

#	Article	IF	CITATIONS
109	Pre-stressing aluminum nanoparticles as a strategy to enhance reactivity of nanothermite composites. Combustion and Flame, 2019, 205, 33-40.	5.2	35
110	Ignition Behavior of α-AlH ₃ . Combustion Science and Technology, 2010, 182, 1341-1359.	2.3	34
111	Quantification and Compensation of Nonspecific Analyte Aggregation in Electrospray Sampling. Aerosol Science and Technology, 2011, 45, 849-860.	3.1	34
112	<i>In Situ</i> High Temperature Synthesis of Single-Component Metallic Nanoparticles. ACS Central Science, 2017, 3, 294-301.	11.3	34
113	Doped Î'-bismuth oxides to investigate oxygen ion transport as a metric for condensed phase thermite ignition. Physical Chemistry Chemical Physics, 2017, 19, 12749-12758.	2.8	34
114	Mesoporous Silica Spheres Incorporated Aluminum/Poly (Vinylidene Fluoride) for Enhanced Burning Propellants. Advanced Engineering Materials, 2018, 20, 1700547.	3.5	34
115	Three-dimensional off-lattice Monte Carlo simulations on a direct relation between experimental process parameters and fractal dimension of colloidal aggregates. Journal of Colloid and Interface Science, 2010, 344, 353-361.	9.4	33
116	High Heating Rate Reaction Dynamics of Al/CuO Nanolaminates by Nanocalorimetry-Coupled Time-of-Flight Mass Spectrometry. Journal of Physical Chemistry C, 2017, 121, 2771-2777.	3.1	32
117	Incomplete reactions in nanothermite composites. Journal of Applied Physics, 2017, 121, .	2.5	32
118	Measured in-situ mass absorption spectra for nine forms of highly-absorbing carbonaceous aerosol. Carbon, 2018, 136, 85-93.	10.3	32
119	Probing the Reaction Zone of Nanolaminates at â^1⁄4Î1⁄4s Time and â^1⁄4Î1⁄4m Spatial Resolution. Journal of Physical Chemistry C, 2020, 124, 13679-13687.	3.1	32
120	Online Nanoparticle Mass Measurement by Combined Aerosol Particle Mass Analyzer and Differential Mobility Analyzer: Comparison of Theory and Measurements. Aerosol Science and Technology, 2009, 43, 1075-1083.	3.1	31
121	The Effect of Orientation on the Mobility and Dynamic Shape Factor of Charged Axially Symmetric Particles in an Electric Field. Aerosol Science and Technology, 2012, 46, 1035-1044.	3.1	31
122	lgnition and Combustion Characterization of Nano-Al-AP and Nano-Al-CuO-AP Micro-sized Composites Produced by Electrospray Technique. Energy Procedia, 2015, 66, 109-112.	1.8	30
123	Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates. Analytical Chemistry, 2016, 88, 8548-8555.	6.5	30
124	Reaction mechanisms of potassium oxysalts based energetic composites. Combustion and Flame, 2017, 177, 1-9.	5.2	30
125	Implementation of a discrete nodal model to probe the effect of size-dependent surface tension on nanoparticle formation and growth. Journal of Aerosol Science, 2006, 37, 1388-1399.	3.8	29
126	Size-resolved kinetics of Zn nanocrystal hydrolysis for hydrogen generation. International Journal of Hydrogen Energy, 2010, 35, 2268-2277.	7.1	29

#	Article	IF	CITATIONS
127	Restructuring of Graphene Oxide Sheets into Monodisperse Nanospheres. Chemistry of Materials, 2012, 24, 2554-2557.	6.7	29
128	Ignition and Combustion Characteristics of Nanoaluminum with Copper Oxide Nanoparticles of Differing Oxidation State. Journal of Physical Chemistry C, 2016, 120, 29023-29029.	3.1	29
129	lgnition of Nanoscale Titanium/Potassium Perchlorate Pyrotechnic Powder: Reaction Mechanism Study. Journal of Physical Chemistry C, 2018, 122, 10792-10800.	3.1	29
130	Connecting agglomeration and burn rate in a thermite reaction: Role of oxidizer morphology. Combustion and Flame, 2021, 231, 111492.	5.2	29
131	Reduction of Suspended Graphene Oxide Single Sheet Nanopaper: The Effect of Crumpling. Journal of Physical Chemistry C, 2013, 117, 3185-3191.	3.1	28
132	Direct Measurements of Mass-Specific Optical Cross Sections of Single-Component Aerosol Mixtures. Analytical Chemistry, 2013, 85, 8319-8325.	6.5	28
133	Aerosol Synthesis and Reactivity of Thin Oxide Shell Aluminum Nanoparticles via Fluorocarboxylic Acid Functional Coating. Particle and Particle Systems Characterization, 2013, 30, 881-887.	2.3	28
134	Size Resolved High Temperature Oxidation Kinetics of Nano-Sized Titanium and Zirconium Particles. Journal of Physical Chemistry A, 2015, 119, 6171-6178.	2.5	28
135	Molecular Aluminum Additive for Burn Enhancement of Hydrocarbon Fuels. Journal of Physical Chemistry A, 2015, 119, 11084-11093.	2.5	28
136	Influence of transition metal electronegativity on the oxygen storage capacity of perovskite oxides. Chemical Communications, 2016, 52, 10369-10372.	4.1	28
137	Aerosol synthesis of phase pure iodine/iodic biocide microparticles. Journal of Materials Research, 2017, 32, 890-896.	2.6	28
138	Performance of iodine oxides/iodic acids as oxidizers in thermite systems. Combustion and Flame, 2018, 191, 335-342.	5.2	28
139	Ultrafast, Controllable Synthesis of Sub-Nano Metallic Clusters through Defect Engineering. ACS Applied Materials & Interfaces, 2019, 11, 29773-29779.	8.0	28
140	High-Temperature Pulse Method for Nanoparticle Redispersion. Journal of the American Chemical Society, 2020, 142, 17364-17371.	13.7	28
141	In Situ, Fast, Highâ€Temperature Synthesis of Nickel Nanoparticles in Reduced Graphene Oxide Matrix. Advanced Energy Materials, 2017, 7, 1601783.	19.5	27
142	Surface Modification of Cisplatin-Complexed Gold Nanoparticles and Its Influence on Colloidal Stability, Drug Loading, and Drug Release. Langmuir, 2018, 34, 154-163.	3.5	27
143	Vapor-Phase Strategy to Pillaring of Two-Dimensional Zeolite. Journal of the American Chemical Society, 2019, 141, 8712-8716.	13.7	27
144	Development of a phenomenological scaling law for fractal aggregate sintering from molecular dynamics simulation. Journal of Aerosol Science, 2007, 38, 793-806.	3.8	26

#	Article	IF	CITATIONS
145	"Effective―Negative Surface Tension: A Property of Coated Nanoaerosols Relevant to the Atmosphere. Journal of Physical Chemistry A, 2007, 111, 5459-5464.	2.5	26
146	Aerosol-Based Self-Assembly of Nanoparticles into Solid or Hollow Mesospheres. Langmuir, 2010, 26, 4327-4330.	3.5	26
147	Physical Characterization of Icosahedral Virus Ultra Structure, Stability, and Integrity Using Electrospray Differential Mobility Analysis. Analytical Chemistry, 2011, 83, 1753-1759.	6.5	26
148	Quantifying Ligand Adsorption to Nanoparticles Using Tandem Differential Mobility Mass Analysis. Analytical Chemistry, 2012, 84, 6308-6311.	6.5	26
149	Dimethyl Methylphosphonate Adsorption Capacities and Desorption Energies on Ordered Mesoporous Carbons. ACS Applied Materials & Interfaces, 2017, 9, 40638-40644.	8.0	26
150	Preparation and combustion of laminated iodine containing aluminum/polyvinylidene fluoride composites. Combustion and Flame, 2018, 197, 120-126.	5.2	26
151	Revealing High-Temperature Reduction Dynamics of High-Entropy Alloy Nanoparticles <i>via In Situ</i> Transmission Electron Microscopy. Nano Letters, 2021, 21, 1742-1748.	9.1	26
152	Synthesis, Characterization, and Application of Antibody Functionalized Fluorescent Silica Nanoparticles. Advanced Functional Materials, 2013, 23, 3335-3343.	14.9	25
153	Evaluating the Mobility of Nanorods in Electric Fields. Aerosol Science and Technology, 2013, 47, 1101-1107.	3.1	24
154	Oxidation Anisotropy and Size-Dependent Reaction Kinetics of Zinc Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 14644-14650.	3.1	23
155	Decomposition of Aminotetrazole Based Energetic Materials under High Heating Rate Conditions. Journal of Physical Chemistry A, 2012, 116, 1519-1526.	2.5	23
156	High heating rate decomposition dynamics of copper oxide by nanocalorimetry-coupled time-of-flight mass spectrometry. Chemical Physics Letters, 2017, 689, 26-29.	2.6	23
157	Experimental observation of the heat transfer mechanisms that drive propagation in additively manufactured energetic materials. Combustion and Flame, 2020, 215, 417-424.	5.2	23
158	Tuning the reactivity and energy release rate of I2O5 based ternary thermite systems. Combustion and Flame, 2021, 228, 210-217.	5.2	23
159	Evidence for the Predominance of Condensed Phase Reaction in Chemical Looping Reactions between Carbon and Oxygen Carriers. Journal of Physical Chemistry C, 2012, 116, 24496-24502.	3.1	22
160	Temperature-Programmed Electrospray–Differential Mobility Analysis for Characterization of Ligated Nanoparticles in Complex Media. Langmuir, 2013, 29, 11267-11274.	3.5	22
161	On the promotion of high temperature AP decomposition with silica mesoparticles. Combustion and Flame, 2019, 200, 296-302.	5.2	22
162	Evaluation of electrospray differential mobility analysis for virus particle analysis: Potential applications for biomanufacturing. Journal of Virological Methods, 2011, 178, 201-208.	2.1	21

#	Article	IF	CITATIONS
163	Nanocalorimetry-Coupled Time-of-Flight Mass Spectrometry: Identifying Evolved Species during High-Rate Thermal Measurements. Analytical Chemistry, 2015, 87, 9740-9744.	6.5	21
164	Evaluating free vs bound oxygen on ignition of nano-aluminum based energetics leads to a critical reaction rate criterion. Journal of Applied Physics, 2015, 118, .	2.5	21
165	Doped Perovskites To Evaluate the Relationship between Fuel–Oxidizer Thermite Ignition and Bond Energy, Electronegativity, and Oxygen Vacancy. Journal of Physical Chemistry C, 2017, 121, 147-152.	3.1	21
166	Silicon Nanoparticles for the Reactivity and Energetic Density Enhancement of Energetic-Biocidal Mesoparticle Composites. ACS Applied Materials & Interfaces, 2021, 13, 458-467.	8.0	21
167	Gas-phase growth of diameter-controlled carbon nanotubes. Materials Letters, 2007, 61, 2079-2083.	2.6	19
168	Rapid-heating of energetic materials using a micro-differential scanning calorimeter. Thermochimica Acta, 2011, 521, 125-129.	2.7	19
169	Thermal desorption of dimethyl methylphosphonate from MoO ₃ . Journal of Lithic Studies, 2017, 3, 112-118.	0.5	19
170	Direct Deposit of Highly Reactive Bi(IO ₃) ₃ ―Polyvinylidene Fluoride Biocidal Energetic Composite and its Reactive Properties. Advanced Engineering Materials, 2017, 19, 1500532.	3.5	19
171	Carbon addition lowers initiation and iodine release temperatures from iodine oxide-based biocidal energetic materials. Carbon, 2018, 130, 410-415.	10.3	19
172	Tailoring energy release of nano-Si based thermites via incorporation of Ti nanoparticles. Chemical Engineering Journal, 2020, 396, 124559.	12.7	18
173	Carbon Fibers Enhance the Propagation of High Loading Nanothermites: In Situ Observation of Microscopic Combustion. ACS Applied Materials & Interfaces, 2021, 13, 30504-30511.	8.0	18
174	3D Printed Grapheneâ€Based 3000 K Probe. Advanced Functional Materials, 2021, 31, 2102994.	14.9	18
175	Ignition and combustion of Perfluoroalkyl-functionalized aluminum nanoparticles and nanothermite. Combustion and Flame, 2022, 242, 112170.	5.2	18
176	Understanding the mobility of nonspherical particles in the free molecular regime. Physical Review E, 2014, 89, 022112.	2.1	17
177	Growth of Sub-5 nm Metal Nanoclusters in Polymer Melt Aerosol Droplets. Langmuir, 2018, 34, 585-594.	3.5	17
178	High-Temperature Interactions of Metal Oxides and a PVDF Binder. ACS Applied Materials & Interfaces, 2022, 14, 8938-8946.	8.0	17
179	A consensus rating method for small virus-retentive filters. I. Method development. PDA Journal of Pharmaceutical Science and Technology, 2008, 62, 318-33.	0.5	17
180	Development of a Pulsed-Field Differential Mobility Analyzer: A Method for Measuring Shape Parameters for Nonspherical Particles. Aerosol Science and Technology, 2014, 48, 22-30.	3.1	16

#	Article	IF	CITATIONS
181	Enhanced thermal decomposition kinetics of poly(lactic acid) sacrificial polymer catalyzed by metal oxide nanoparticles. RSC Advances, 2015, 5, 101745-101750.	3.6	16
182	Sarin Decomposition on Pristine and Hydroxylated ZnO: Quantum-Chemical Modeling. Journal of Physical Chemistry C, 2019, 123, 26432-26441.	3.1	16
183	Understanding Dimethyl Methylphosphonate Adsorption and Decomposition on Mesoporous CeO ₂ . ACS Applied Materials & Interfaces, 2021, 13, 54597-54609.	8.0	16
184	Friction factor for aerosol fractal aggregates over the entire Knudsen range. Physical Review E, 2017, 95, 013103.	2.1	15
185	Direct Deposit of Fiber Reinforced Energetic NanoComposites. Propellants, Explosives, Pyrotechnics, 2017, 42, 1079-1084.	1.6	15
186	One-step solvent-free mechanochemical synthesis of metal iodate fine powders. Powder Technology, 2018, 324, 62-68.	4.2	15
187	On the structure of organic-coated water droplets: From "net water attractors―to "oily―drops. Journal of Geophysical Research, 2011, 116, .	3.3	14
188	One-step synthesis of dye-incorporated porous silica particles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	14
189	Synthesis and Reactive Properties of Iron Oxide–Coated Nanoaluminum. Journal of Energetic Materials, 2014, 32, 95-105.	2.0	14
190	Fast quantification of nanorod geometry by DMA-spICP-MS. Analyst, The, 2019, 144, 2275-2283.	3.5	14
191	Microwave absorption by small dielectric and semi-conductor coated metal particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 247, 106938.	2.3	14
192	Influence of titanium addition on performance of boron-based thermites. Chemical Engineering Journal, 2022, 438, 134837.	12.7	14
193	Aerosol synthesis and reactive behavior of faceted aluminum nanocrystals. Journal of Crystal Growth, 2010, 312, 3625-3630.	1.5	13
194	Absolute Quantification Method for Protein Concentration. Analytical Chemistry, 2014, 86, 12130-12137.	6.5	13
195	Rotational Diffusion Coefficient (or Rotational Mobility) of a Nanorod in the Free-Molecular Regime. Aerosol Science and Technology, 2014, 48, 139-141.	3.1	13
196	lgnition and Combustion Characterization of Ca(IO ₃) ₂ â€based Pyrotechnic Composites with B, Al, and Ti. Propellants, Explosives, Pyrotechnics, 2018, 43, 977-985.	1.6	13
197	Silver ferrite: a superior oxidizer for thermite-driven biocidal nanoenergetic materials. RSC Advances, 2019, 9, 1831-1840.	3.6	13
198	Energetic characteristics of hydrogenated amorphous silicon nanoparticles. Chemical Engineering Journal, 2022, 430, 133140.	12.7	13

#	Article	IF	CITATIONS
199	Microwave Stimulation of Energetic Al-Based Nanoparticle Composites for Ignition Modulation. ACS Applied Nano Materials, 2022, 5, 2460-2469.	5.0	13
200	In-Situ Thermochemical Shock-Induced Stress at the Metal/Oxide Interface Enhances Reactivity of Aluminum Nanoparticles. ACS Applied Materials & amp; Interfaces, 2022, 14, 26782-26790.	8.0	13
201	Restructuring tungsten thin films into nanowires and hollow square cross-section microducts. Journal of Materials Research, 2005, 20, 2889-2894.	2.6	12
202	Ignition Catalyzed by Unsupported Metal Nanoparticles. Energy & Fuels, 2011, 25, 3925-3933.	5.1	12
203	Calculating the rotational friction coefficient of fractal aerosol particles in the transition regime using extended Kirkwood-Riseman theory. Physical Review E, 2017, 96, 013110.	2.1	12
204	Study of C/Doped δ-Bi ₂ O ₃ Redox Reactions by in Operando Synchrotron X-ray Diffraction: Bond Energy/Oxygen Vacancy and Reaction Kinetics Relationships. Journal of Physical Chemistry C, 2018, 122, 8796-8803.	3.1	12
205	Droplet combustion of kerosene augmented by stabilized nanoaluminum/oxidizer composite mesoparticles. Combustion and Flame, 2020, 211, 1-7.	5.2	12
206	Transient ion ejection during nanocomposite thermite reactions. Journal of Applied Physics, 2009, 106, 083306.	2.5	11
207	Evaporation Anisotropy of Free Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 16941-16946.	3.1	11
208	Protein adsorption–desorption on electrospray capillary walls – No influence on aggregate distribution. Journal of Colloid and Interface Science, 2012, 377, 476-484.	9.4	11
209	Ignition and Reaction Analysis of High Loading Nano-Al/Fluoropolymer Energetic Composite Films. , 2014, , .		11
210	Zeolite-Supported Iron Oxides as Durable and Selective Oxygen Carriers for Chemical Looping Combustion. Energy & Fuels, 2017, 31, 11225-11233.	5.1	11
211	Why does adding a poor thermal conductor increase propagation rate in solid propellants?. Applied Physics Letters, 2019, 115, .	3.3	11
212	Direct In Situ Mass Specific Absorption Spectra of Biomass Burning Particles Generated from Smoldering Hard and Softwoods. Environmental Science & Technology, 2017, 51, 5622-5629.	10.0	10
213	Mechanism of microwave-initiated ignition of sensitized energetic nanocomposites. Chemical Engineering Journal, 2021, 415, 128657.	12.7	10
214	Component and morphology biases on quantifying the composition of nanoparticles using single-particle mass spectrometry. International Journal of Mass Spectrometry, 2006, 258, 104-112.	1.5	9
215	Direct synthesis of tin oxide nanotubes on microhotplates using carbon nanotubes as templates. Journal of Materials Research, 2011, 26, 430-436.	2.6	9
216	Electrospray–Differential Mobility Analysis as an Orthogonal Tool to Size-Exclusion Chromatography for Characterization of Protein Aggregates. Journal of Pharmaceutical Sciences, 2012, 101, 1985-1994.	3.3	9

#	Article	IF	CITATIONS
217	On-the-fly green generation and dispersion of AgI nanoparticles for cloud seeding nuclei. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	9
218	Analytical expression for the friction coefficient of DLCA aggregates based on extended Kirkwood–Riseman theory. Aerosol Science and Technology, 2017, 51, 766-777.	3.1	9
219	Investigating the oxidation mechanism of tantalum nanoparticles at high heating rates. Journal of Applied Physics, 2017, 122, 245901.	2.5	9
220	Thermal Shock Synthesis of Metal Nanoclusters within On-the-Fly Graphene Particles. Langmuir, 2019, 35, 3413-3420.	3.5	9
221	Spatially focused microwave ignition of metallized energetic materials. Journal of Applied Physics, 2020, 127, .	2.5	9
222	Superior reactivity of ferroelectric Bi2WO6/aluminum metastable intermolecular composite. Chemical Engineering Science, 2022, 247, 116898.	3.8	9
223	Rerouting Pathways of Solid-State Ammonia Borane Energy Release. Journal of Physical Chemistry C, 2022, 126, 48-57.	3.1	9
224	Direct Imaging and Simulation of the Interface Reaction of Metal/Metal Oxide Nanoparticle Laminates. Journal of Physical Chemistry C, 2022, 126, 8684-8691.	3.1	9
225	Catalytic decomposition of liquid hydrocarbons in an aerosol reactor: A potential solar route to hydrogen production. International Journal of Hydrogen Energy, 2010, 35, 7476-7484.	7.1	8
226	Characterizing the Adsorption of Proteins on Glass Capillary Surfaces Using Electrospray-Differential Mobility Analysis. Langmuir, 2011, 27, 13008-13014.	3.5	8
227	Light Scattering Shape Diagnostics for Nano-Agglomerates. Aerosol Science and Technology, 2013, 47, 520-529.	3.1	8
228	Synergistic effects of ultrafast heating and gaseous chlorine on the neutralization of bacterial spores. Chemical Engineering Science, 2016, 144, 39-47.	3.8	8
229	Ignition and Combustion Characteristics of Al/RDX/NC Nanostructured Microparticles. Combustion Science and Technology, 2021, 193, 2259-2275.	2.3	8
230	Numerically evaluating energetic composite flame propagation with thermally conductive, high aspect ratio fillers. Chemical Engineering Science, 2021, 229, 116087.	3.8	8
231	Magnetic-Field Directed Vapor-Phase Assembly of Low Fractal Dimension Metal Nanostructures: Experiment and Theory. Journal of Physical Chemistry Letters, 2021, 12, 4085-4091.	4.6	8
232	Engineered Porosity-Induced Burn Rate Enhancement in Dense Al/CuO Nanothermites. ACS Applied Energy Materials, 2022, 5, 3189-3198.	5.1	8
233	Quantifying protein aggregation kinetics using electrospray differential mobility analysis. Journal of Pharmaceutical and Biomedical Analysis, 2020, 177, 112845.	2.8	7
234	Vaporization-Controlled Energy Release Mechanisms Underlying the Exceptional Reactivity of Magnesium Nanoparticles. ACS Applied Materials & amp; Interfaces, 2022, 14, 17164-17174.	8.0	7

#	Article	IF	CITATIONS
235	Wavelength-Resolved UV Photoelectric Charging Dynamics of Nanoparticles: Comparison of Spheres and Aggregates. Aerosol Science and Technology, 2013, 47, 672-680.	3.1	6
236	The effect of alignment on the electric mobility of soot. Aerosol Science and Technology, 2016, 50, 1003-1016.	3.1	6
237	The effect of electric-field-induced alignment on the electrical mobility of fractal aggregates. Aerosol Science and Technology, 2018, 52, 524-535.	3.1	6
238	Ultrafast, scalable laser photothermal synthesis and writing of uniformly dispersed metal nanoclusters in polymer films. Nanoscale, 2019, 11, 13354-13365.	5.6	6
239	Rapid Laser Pulse Synthesis of Supported Metal Nanoclusters with Kinetically Tunable Size and Surface Density for Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 2959-2968.	5.0	6
240	In-operando thermophysical properties and kinetics measurements of Al-Zr-C composites. Combustion and Flame, 2021, 228, 250-258.	5.2	6
241	Flame stand-off effects on propagation of 3D printed 94Âwt% nanosized pyrolants loading composites. Chemical Engineering Journal, 2022, 434, 134487.	12.7	6
242	Unzipping polymers significantly enhance energy flux of aluminized composites. Combustion and Flame, 2022, 244, 112242.	5.2	6
243	Effect of particle rotation on the drift velocity for nonspherical aerosol particles. Journal of Aerosol Science, 2016, 101, 65-76.	3.8	5
244	Crystal structure of a new polymorph of iodic acid, <i>δ</i> -HIO ₃ , from powder diffraction. Powder Diffraction, 2017, 32, 261-264.	0.2	5
245	Analytical expression for the rotational friction coefficient of DLCA aggregates over the entire Knudsen regime. Aerosol Science and Technology, 2018, 52, 209-221.	3.1	5
246	Aerosol formation of Sea-Urchin-like nanostructures of carbon nanotubes on bimetallic nanocomposite particles. Journal of Nanoparticle Research, 2011, 13, 139-146.	1.9	4
247	Quantitative Attachment and Detachment of Bacterial Spores from Fine Wires through Continuous and Pulsed DC Electrophoretic Deposition. Journal of Physical Chemistry B, 2013, 117, 1738-1745.	2.6	4
248	Mechanistic Studies of [AlCp*]4Combustion. Inorganic Chemistry, 2018, 57, 8181-8188.	4.0	4
249	Elucidating the dominant mechanisms in burn rate increase of thermite nanolaminates incorporating nanoparticle inclusions. Nanotechnology, 2021, 32, 215401.	2.6	4
250	Inducing Oxygen Vacancies to Modulate Ignition Threshold of Nanothermites. Energy & Fuels, 2022, 36, 5878-5884.	5.1	4
251	Microsphere Composites of Nano-Al and Nanothermite: An Approach to Better Utilization of Nanomaterials. , 2014, , .		3
252	Probing the Oxidation Mechanism of Ta Nanoparticles via In-Situ and Ex-Situ Ultra-Fast Heating TEM/STEM. Microscopy and Microanalysis, 2016, 22, 780-781.	0.4	3

#	Article	IF	CITATIONS
253	What atomic properties of metal oxide control the reaction threshold of solid elemental fuels?. Physical Chemistry Chemical Physics, 2018, 20, 26885-26891.	2.8	3
254	Modelling and simulation of field directed linear assembly of aerosol particles. Journal of Colloid and Interface Science, 2021, 592, 195-204.	9.4	3
255	Effect of alkali metal perchlorate and iodate type on boron ignition: The role of oxidizer phase change. Chemical Engineering Journal, 2022, 446, 136786.	12.7	3
256	Competitive adsorption–desorption of IgM monomers-dimers on silica and modified silica surfaces. Journal of Colloid and Interface Science, 2013, 402, 291-299.	9.4	2
257	Oxidation and decomposition mechanisms of air sensitive aluminum clusters at high heating rates. Chemical Physics Letters, 2016, 661, 168-172.	2.6	2
258	Ignition Threshold of Perovskite-Based Oxides for Solid Fuel Oxidation from First-Principles Calculations. Journal of Physical Chemistry C, 2019, 123, 17644-17649.	3.1	2
259	Fixed Feed Temperature-Programmed Modulation—A Quantitative Method To Obtain Thermophysical Parameters: Application to Chemical Warfare Agent Adsorbents. Journal of Physical Chemistry C, 2019, 123, 12694-12705.	3.1	2
260	Control of Primary Particle Size and the Onset of Aggregate Formation: The Effect of Energy Release in Nanoparticle Collision and Coalescence Processes. Materials Research Society Symposia Proceedings, 2002, 731, 621.	0.1	1
261	Design, Fabrication and Testing of a Novel Gas Sensor utilizing Vertically Aligned Zinc Oxide Nanowire Arrays. Materials Research Society Symposia Proceedings, 2006, 951, 9.	0.1	1
262	Electrostatically Directed Assembly of Silver Nanoparticles for Application to Metal Enhanced Fluorescence Biosensing. Materials Research Society Symposia Proceedings, 2006, 951, 2.	0.1	1
263	Initiation and Decomposition of Tetrazole Containing Green Energetic Materials. Materials Research Society Symposia Proceedings, 2012, 1405, .	0.1	1
264	Response to "Comment on â€~In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates'―[J. Appl. Phys. 119, 066103 (2016)]. Journal of Applied Physics, 2016, 119, 066104.	2.5	1
265	Direct-Deposition to Create High Particle Loading Propellants with Controlled Architecture: Combustion and Mechanical Properties. , 2016, , .		1
266	Size-Resolved Burn Rate Measurements of Metal NanoParticles. , 2016, , .		1
267	Aggregate shape determination via light scattering by aligned and randomly oriented polydisperse aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 219, 37-45.	2.3	1
268	Measurement of Inherent Material Density of Nanoparticle Agglomerates. , 2004, 6, 267.		1
269	Engineering agglomeration and propagation of high Al/CuO nanothermite loading composites with reactive and non-reactive fibers. , 2022, , .		1
270	Improved accuracy for calibrated mass distribution measurements of bimetallic nanoparticles. Journal of Aerosol Science, 2022, 165, 106031.	3.8	1

#	Article	IF	CITATIONS
271	Molecular Dynamics Simulation of Nanoparticle Chain Aggregate Sintering. Materials Research Society Symposia Proceedings, 2006, 978, .	0.1	0
272	Development of a Simple Sintering Law for Fractal Aggregates Composed of Unequal Sized Primary Particles. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	0
273	Reaction Anisotropy and Size Resolved Oxidation Kinetics of Zinc Nanocrystals. Materials Research Society Symposia Proceedings, 2009, 1201, 2.	0.1	0
274	Modified Aerosol Routes to Core-Shell Nano-Energetic Materials Synthesis. Materials Research Society Symposia Proceedings, 2012, 1405, .	0.1	0
275	Gas vs. Condensed Phase Reactions in Nano-Thermites. , 2014, , .		0
276	Probing the Reaction Mechanism for Highly Reactive Nanothermite Formulations. Microscopy and Microanalysis, 2014, 20, 502-503.	0.4	0
277	Triisobutylaluminum additive for liquid hydrocarbon burn enhancement. Combustion and Flame, 2019, 200, 53-59.	5.2	0