Oliver Wirths

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4366058/publications.pdf

Version: 2024-02-01

53794 62596 6,944 116 45 80 citations h-index g-index papers 131 131 131 7336 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Detection and quantification of Aβâ⁻³3–40 (APP669â€₹11) in cerebrospinal fluid. Journal of Neurochemistry, 2022, 160, 578-589.	3.9	6
2	An inhibitory effect on the nuclear accumulation of phospho-STAT1 by its unphosphorylated form. Cell Communication and Signaling, 2022, 20, 42.	6.5	1
3	Meprin \hat{l}^2 knockout reduces brain \hat{Al}^2 levels and rescues learning and memory impairments in the APP/lon mouse model for Alzheimerâ \in [™] s disease. Cellular and Molecular Life Sciences, 2022, 79, 168.	5.4	3
4	Long-term caffeine treatment of Alzheimer mouse models ameliorates behavioural deficits and neuron loss and promotes cellular and molecular markers of neurogenesis. Cellular and Molecular Life Sciences, 2022, 79, 1.	5.4	19
5	Evaluation of the putative lymphoma-associated point mutation D427H in the STAT3 transcription factor. BMC Molecular and Cell Biology, 2022, 23, .	2.0	0
6	Physical activity and cognitive stimulation ameliorate learning and motor deficits in a transgenic mouse model of Alzheimer's disease. Behavioural Brain Research, 2021, 397, 112951.	2.2	7
7	Chronic Memantine Treatment Ameliorates Behavioral Deficits, Neuron Loss, and Impaired Neurogenesis in a Model of Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 204-216.	4.0	22
8	Evaluation of cerebrospinal fluid glycoprotein NMB (GPNMB) as a potential biomarker for Alzheimer's disease. Alzheimer's Research and Therapy, 2021, 13, 94.	6.2	12
9	Characterization of a Mouse Model of Alzheimer's Disease Expressing Aβ4-42 and Human Mutant Tau. International Journal of Molecular Sciences, 2021, 22, 5191.	4.1	7
10	The anti-parallel dimer binding interface in STAT3 transcription factor is required for the inactivation of cytokine-mediated signal transduction. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119118.	4.1	4
11	A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Molecular Medicine, 2021, 13, e13659.	6.9	29
12	Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nature Communications, 2021, 12, 6530.	12.8	16
13	Neuron Loss in Alzheimer's Disease: Translation in Transgenic Mouse Models. International Journal of Molecular Sciences, 2020, 21, 8144.	4.1	39
14	Development and Technical Validation of an Immunoassay for the Detection of APP669–711 (Aβâ~3–40) in Biological Samples. International Journal of Molecular Sciences, 2020, 21, 6564.	4.1	12
15	Nâ€ŧerminal heterogeneity of parenchymal and vascular amyloidâ€Î² deposits in Alzheimer's disease. Neuropathology and Applied Neurobiology, 2020, 46, 673-685.	3.2	20
16	Loss of Hippocampal Calretinin and Parvalbumin Interneurons in the 5XFAD Mouse Model of Alzheimer's Disease. ASN Neuro, 2020, 12, 175909142092535.	2.7	23
17	N-Terminal Truncated A \hat{I}^2 4-42 Is a Substrate for Neprilysin Degradation in vitro and in vivo. Journal of Alzheimer's Disease, 2019, 67, 849-858.	2.6	10
18	Physical Activity Ameliorates Impaired Hippocampal Neurogenesis in the Tg4-42 Mouse Model of Alzheimer's Disease. ASN Neuro, 2019, 11, 175909141989269.	2.7	12

#	Article	IF	CITATIONS
19	Emerging roles of N- and C-terminally truncated Aβ species in Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2019, 23, 991-1004.	3.4	32
20	The metalloprotease ADAMTS4 generates N-truncated Aβ4â€"x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer's disease. Acta Neuropathologica, 2019, 137, 239-257.	7.7	44
21	A two-step immunoassay for the simultaneous assessment of Aβ38, Aβ40 and Aβ42 in human blood plasma supports the Aβ42/Aβ40 ratio as a promising biomarker candidate of Alzheimer's disease. Alzheimer's Research and Therapy, 2018, 10, 121.	6.2	39
22	Glycoprotein NMB: a novel Alzheimer's disease associated marker expressed in a subset of activated microglia. Acta Neuropathologica Communications, 2018, 6, 108.	5.2	107
23	Synergistic Effect on Neurodegeneration by N-Truncated AÎ ² 4â [*] 42 and Pyroglutamate AÎ ² 3â [*] 42 in a Mouse Model of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 64.	3.4	11
24	The presubiculum is preserved from neurodegenerative changes in Alzheimer's disease. Acta Neuropathologica Communications, 2018, 6, 62.	5.2	9
25	Endogenous Apolipoprotein E (ApoE) Fragmentation Is Linked to Amyloid Pathology in Transgenic Mouse Models of Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 319-327.	4.0	26
26	Altered neurogenesis in mouse models of Alzheimer disease. Neurogenesis (Austin, Tex), 2017, 4, e1327002.	1.5	39
27	Limited Effects of Prolonged Environmental Enrichment on the Pathology of 5XFAD Mice. Molecular Neurobiology, 2017, 54, 6542-6555.	4.0	34
28	N-truncated Aβ4–x peptides in sporadic Alzheimer's disease cases and transgenic Alzheimer mouse models. Alzheimer's Research and Therapy, 2017, 9, 80.	6.2	34
29	Extraction of Soluble and Insoluble Protein Fractions from Mouse Brains and Spinal Cords. Bio-protocol, 2017, 7, e2422.	0.4	4
30	Preparation of Crude Synaptosomal Fractions from Mouse Brains and Spinal Cords. Bio-protocol, 2017, 7, e2423.	0.4	10
31	Gene Expression Profiling in the APP/PS1KI Mouse Model of Familial Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 50, 397-409.	2.6	12
32	Effects of Long-Term Environmental Enrichment on Anxiety, Memory, Hippocampal Plasticity and Overall Brain Gene Expression in C57BL6 Mice. Frontiers in Molecular Neuroscience, 2016, 9, 62.	2.9	88
33	Deposition of C-terminally truncated Aβ species Aβ37 and Aβ39 in Alzheimer's disease and transgenic mouse models. Acta Neuropathologica Communications, 2016, 4, 24.	5.2	29
34	Phosphorylation of the amyloid \hat{l}^2 -peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. Acta Neuropathologica, 2016, 131, 525-537.	7.7	84
35	The Cannabinoid CB1/CB2 Agonist WIN55212.2 Promotes Oligodendrocyte Differentiation In Vitro and Neuroprotection During the Cuprizoneâ€Induced Central Nervous System Demyelination. CNS Neuroscience and Therapeutics, 2016, 22, 387-395.	3.9	29
36	Immunotherapy Against N-Truncated Amyloid- \hat{l}^2 Oligomers. Methods in Pharmacology and Toxicology, 2016, , 37-50.	0.2	3

#	Article	IF	Citations
37	Physical activity delays hippocampal neurodegeneration and rescues memory deficits in an Alzheimer disease mouse model. Translational Psychiatry, 2016, 6, e800-e800.	4.8	64
38	Gene Dosage Dependent Aggravation of the Neurological Phenotype in the 5XFAD Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 45, 1223-1236.	2.6	80
39	Neprilysin Deficiency Alters the Neuropathological and Behavioral Phenotype in the 5XFAD Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 44, 1291-1302.	2.6	63
40	N-Truncated Aβ2-X Starting with Position Two in Sporadic Alzheimer's Disease Cases and Two Alzheimer Mouse Models. Journal of Alzheimer's Disease, 2015, 49, 101-110.	2.6	9
41	I716F AβPP Mutation Associates with the Deposition of Oligomeric Pyroglutamate Amyloid-β and \hat{l}_{\pm} -Synucleinopathy with Lewy Bodies. Journal of Alzheimer's Disease, 2015, 44, 103-114.	2.6	13
42	Immunocytochemical Detection of Intraneuronal Aβ Peptides in Mouse Models of Alzheimer's Disease. Neuromethods, 2015, , 179-193.	0.3	0
43	Physical activity ameliorates neuron loss and memory deficits in Tg4-42 mice. Pharmacopsychiatry, 2015, 48, .	3.3	0
44	Physical activity ameliorates neuron loss and memory deficits in Tg4-42 mice. Pharmacopsychiatry, 2015, 48, .	3.3	0
45	Deciphering the Molecular Profile of Plaques, Memory Decline and Neuron Loss in Two Mouse Models for Alzheimerââ,¬â"¢s Disease by Deep Sequencing. Frontiers in Aging Neuroscience, 2014, 6, 75.	3.4	78
46	Axonal degeneration in an Alzheimer mouse model is PS1 gene dose dependent and linked to intraneuronal AÃŽÂ 2 accumulation. Frontiers in Aging Neuroscience, 2014, 6, 139.	3.4	26
47	AÎ ² 38 in the Brains of Patients with Sporadic and Familial Alzheimer's Disease and Transgenic Mouse Models. Journal of Alzheimer's Disease, 2014, 39, 871-881.	2.6	25
48	Immunolesionâ€induced loss of cholinergic projection neurones promotes βâ€amyloidosis and tau hyperphosphorylation in the hippocampus of tripleâ€transgenic mice. Neuropathology and Applied Neurobiology, 2014, 40, 106-120.	3.2	28
49	Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer's disease. Acta Neuropathologica, 2014, 127, 787-801.	7.7	129
50	Abundance of Aβ5-xlike immunoreactivity in transgenic 5XFAD, APP/PS1KI and 3xTG mice, sporadic and familial Alzheimer's disease. Molecular Neurodegeneration, 2014, 9, 13.	10.8	19
51	N-truncated amyloid \hat{l}^2 (A \hat{l}^2) 4-42 forms stable aggregates and induces acute and long-lasting behavioral deficits. Acta Neuropathologica, 2013, 126, 189-205.	7.7	153
52	Early intraneuronal accumulation and increased aggregation of phosphorylated Abeta in a mouse model of Alzheimer's disease. Acta Neuropathologica, 2013, 125, 699-709.	7.7	79
53	N-truncated Abeta starting with position four: early intraneuronal accumulation and rescue of toxicity using NT4X-167, a novel monoclonal antibody. Acta Neuropathologica Communications, 2013, 1, 56.	5.2	36
54	Accelerated tau pathology with synaptic and neuronal loss in a novel triple transgenic mouse model of Alzheimer's disease. Neurobiology of Aging, 2013, 34, 2564-2573.	3.1	55

#	Article	IF	Citations
55	Abundant pyroglutamate-modified ABri and ADan peptides in extracellular and vascular amyloid deposits in familial British and Danish dementias. Neurobiology of Aging, 2013, 34, 1416-1425.	3.1	14
56	Problems During Aging (Alzheimer's and Others). , 2013, , 2953-2969.		0
57	The Arctic AβPP mutation leads to Alzheimer's disease pathology with highly variable topographic deposition of differentially truncated Aβ. Acta Neuropathologica Communications, 2013, 1, 60.	5.2	38
58	Oligomeric Pyroglutamate Amyloid- \hat{l}^2 is Present in Microglia and a Subfraction of Vessels in Patients with Alzheimer's Disease: Implications for Immunotherapy. Journal of Alzheimer's Disease, 2013, 35, 741-749.	2.6	18
59	Pyroglutamate Amyloid \hat{l}^2 ($\hat{Al^2}$) Aggravates Behavioral Deficits in Transgenic Amyloid Mouse Model for Alzheimer Disease. Journal of Biological Chemistry, 2012, 287, 8154-8162.	3.4	71
60	AÎ ² PP Accumulation and/or Intraneuronal Amyloid-Î ² Accumulation? The 3xTg-AD Mouse Model Revisited. Journal of Alzheimer's Disease, 2012, 28, 897-904.	2.6	33
61	Antibody 9D5 Recognizes Oligomeric Pyroglutamate Amyloid- \hat{l}^2 in a Fraction of Amyloid- \hat{l}^2 Deposits in Alzheimer's Disease without Cross-Reactivity with other Protein Aggregates. Journal of Alzheimer's Disease, 2012, 29, 361-371.	2.6	17
62	Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1KI mice. Neurobiology of Aging, 2012, 33, 96-107.	3.1	71
63	Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal $A\hat{l}^2$ aggregation in the 5XFAD mouse model of Alzheimer's disease. Neurobiology of Aging, 2012, 33, 196.e29-196.e40.	3.1	421
64	No improvement after chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer's disease. Neurobiology of Aging, 2012, 33, 833.e39-833.e50.	3.1	32
65	Amyloid Precursor Protein Is a Biomarker for Transformed Human Pluripotent Stem Cells. American Journal of Pathology, 2012, 180, 1636-1652.	3.8	12
66	Intraneuronal \hat{A}^2 accumulation and neurodegeneration: Lessons from transgenic models. Life Sciences, 2012, 91, 1148-1152.	4.3	81
67	Reduced levels of IgM autoantibodies against N-truncated pyroglutamate $\hat{Al^2}$ in plasma of patients with Alzheimer's disease. Neurobiology of Aging, 2011, 32, 1379-1387.	3.1	23
68	Intraneuronal \hat{A}^2 as a trigger for neuron loss: can this be translated into human pathology?. Biochemical Society Transactions, 2011, 39, 857-861.	3.4	33
69	Overexpression of Glutaminyl Cyclase, the Enzyme Responsible for Pyroglutamate $\hat{A^2}$ Formation, Induces Behavioral Deficits, and Glutaminyl Cyclase Knock-out Rescues the Behavioral Phenotype in 5XFAD Mice. Journal of Biological Chemistry, 2011, 286, 4454-4460.	3.4	79
70	Pyroglutamate Amyloid- \hat{l}^2 (A \hat{l}^2): A Hatchet Man in Alzheimer Disease. Journal of Biological Chemistry, 2011, 286, 38825-38832.	3.4	177
71	Accumulation of intraneuronal $\hat{Al^2}$ correlates with ApoE4 genotype. Acta Neuropathologica, 2010, 119, 555-566.	7.7	94
72	Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer's disease cases. Journal of Neural Transmission, 2010, 117, 85-96.	2.8	87

#	Article	IF	Citations
73	Intracellular accumulation of amyloid-beta – a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease. Frontiers in Aging Neuroscience, 2010, 2, 8.	3.4	161
74	Neuron Loss in Transgenic Mouse Models of Alzheimer's Disease. International Journal of Alzheimer's Disease, 2010, 2010, 1-6.	2.0	57
75	Identification of Low Molecular Weight Pyroglutamate AÎ ² Oligomers in Alzheimer Disease. Journal of Biological Chemistry, 2010, 285, 41517-41524.	3.4	91
76	Gene expression of neuregulin-1 isoforms in different brain regions of elderly schizophrenia patients. World Journal of Biological Psychiatry, 2010, 11, 243-250.	2.6	40
77	Histone Deacetylase Inhibitor Valproic Acid Inhibits Cancer Cell Proliferation via Down-regulation of the Alzheimer Amyloid Precursor Protein. Journal of Biological Chemistry, 2010, 285, 10678-10689.	3.4	104
78	Concomitant detection of \hat{l}^2 -amyloid peptides with N-terminal truncation and different C-terminal endings in cortical plaques from cases with Alzheimer's disease, senile monkeys and triple transgenic mice. Journal of Chemical Neuroanatomy, 2010, 40, 82-92.	2.1	34
79	Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer's disease. Neurobiology of Aging, 2010, 31, 747-757.	3.1	111
80	Intracellular $\hat{A^2}$ triggers neuron loss in the cholinergic system of the APP/PS1KI mouse model of Alzheimer's disease. Neurobiology of Aging, 2010, 31, 1153-1163.	3.1	66
81	Die modifizierte Amyloid-Hypothese der Alzheimer-Demenz – intraneuronales Abeta induziert Neurodegeneration. E-Neuroforum, 2009, 15, 76-83.	0.1	0
82	Formic acid is essential for immunohistochemical detection of aggregated intraneuronal $\hat{Al^2}$ peptides in mouse models of Alzheimer's disease. Brain Research, 2009, 1301, 116-125.	2.2	31
83	Circulating immune complexes of Al̂² and IgM in plasma of patients with Alzheimer's disease. Journal of Neural Transmission, 2009, 116, 913-920.	2.8	22
84	APP/PS1KI bigenic mice develop early synaptic deficits and hippocampus atrophy. Acta Neuropathologica, 2009, 117, 677-685.	7.7	74
85	Intraneuronal pyroglutamate-Abeta 3–42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathologica, 2009, 118, 487-496.	7.7	151
86	Effect of copper intake on CSF parameters in patients with mild Alzheimer's disease: a pilot phaseÂ2 clinical trial. Journal of Neural Transmission, 2008, 115, 1651-1659.	2.8	52
87	Transient intraneuronal $\hat{Al^2}$ rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice. Acta Neuropathologica, 2008, 116, 647-655.	7.7	116
88	Review on the APP/PS1KI mouse model: intraneuronal $\hat{A^2}$ accumulation triggers axonopathy, neuron loss and working memory impairment. Genes, Brain and Behavior, 2008, 7, 6-11.	2.2	47
89	Motor impairment in Alzheimer's disease and transgenic Alzheimer's disease mouse models. Genes, Brain and Behavior, 2008, 7, 1-5.	2.2	81
90	Age-dependent loss of dentate gyrus granule cells in APP/PS1KI mice. Brain Research, 2008, 1222, 207-213.	2.2	18

#	Article	IF	Citations
91	Deficits in working memory and motor performance in the APP/PS1ki mouse model for Alzheimer's disease. Neurobiology of Aging, 2008, 29, 891-901.	3.1	75
92	Intraneuronal β-Amyloid Is a Major Risk Factor – Novel Evidence from the APP/PS1KI Mouse Model. Neurodegenerative Diseases, 2008, 5, 140-142.	1.4	18
93	Early Intraneuronal Î ² -Amyloid Pathology: Do Transgenic Mice Represent Valid Model Systems?. The Open Aging Journal, 2008, 2, 7-12.	0.0	2
94	Early Intraneuronal Î ² -Amyloid Pathology: Do Transgenic Mice Represent Valid Model Systems?. Open Longevity Science, 2008, 2, 7-12.	0.8	0
95	Age-dependent axonal degeneration in an Alzheimer mouse model. Neurobiology of Aging, 2007, 28, 1689-1699.	3.1	107
96	Altered cholesterol metabolism in APP695-transfected neuroblastoma cells. Brain Research, 2007, 1152, 209-214.	2.2	6
97	Gender dependent APP processing in a transgenic mouse model of Alzheimer's disease. Journal of Neural Transmission, 2007, 114, 387-394.	2.8	44
98	OTX1 and OTX2 Expression Correlates With the Clinicopathologic Classification of Medulloblastomas. Journal of Neuropathology and Experimental Neurology, 2006, 65, 176-186.	1.7	68
99	Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer's disease. Acta Neuropathologica, 2006, 111, 312-319.	7.7	113
100	Decreased plasma cholesterol levels during aging in transgenic mouse models of Alzheimer's disease. Experimental Gerontology, 2006, 41, 220-224.	2.8	18
101	Traumatic brain injury: cause or risk of Alzheimer's disease? A review of experimental studies. Journal of Neural Transmission, 2005, 112, 1547-1564.	2.8	67
102	A modified $\hat{l}^2\hat{a}\in a$ myloid hypothesis: intraneuronal accumulation of the $\hat{l}^2\hat{a}\in a$ myloid peptide $\hat{a}\in a$ the first step of a fatal cascade. Journal of Neurochemistry, 2004, 91, 513-520.	3.9	344
103	Hippocampal Neuron Loss Exceeds Amyloid Plaque Load in a Transgenic Mouse Model of Alzheimer's Disease. American Journal of Pathology, 2004, 164, 1495-1502.	3.8	233
104	Massive CA1/2 Neuronal Loss with Intraneuronal and N-Terminal Truncated A $\hat{1}^2$ 42 Accumulation in a Novel Alzheimer Transgenic Model. American Journal of Pathology, 2004, 165, 1289-1300.	3.8	375
105	Overexpression of Human Dickkopf-1, an Antagonist of wingless/WNT Signaling, in Human Hepatoblastomas and Wilms' Tumors. Laboratory Investigation, 2003, 83, 429-434.	3.7	134
106	Time sequence of maturation of dystrophic neurites associated with ${\rm A\hat{l}^2}$ deposits in APP/PS1 transgenic mice. Experimental Neurology, 2003, 184, 247-263.	4.1	257
107	\hat{l}_{\pm} -Synuclein, $\hat{Al^2}$ and Alzheimer's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 103-108.	4.8	35
108	No alterations of hippocampal neuronal number and synaptic bouton number in a transgenic mouse model expressing the \hat{l}^2 -cleaved C-terminal APP fragment. Neurobiology of Disease, 2003, 12, 110-120.	4.4	37

#	Article	IF	CITATIONS
109	Intraneuronal APP/Aβ Trafficking and Plaque Formation in βâ€Amyloid Precursor Protein and Presenilinâ€1 Transgenic Mice. Brain Pathology, 2002, 12, 275-286.	4.1	113
110	Intraneuronal \hat{Al}^2 accumulation precedes plaque formation in \hat{l}^2 -amyloid precursor protein and presenilin-1 double-transgenic mice. Neuroscience Letters, 2001, 306, 116-120.	2.1	323
111	Reelin in plaques of \hat{I}^2 -amyloid precursor protein and presenilin-1 double-transgenic mice. Neuroscience Letters, 2001, 316, 145-148.	2.1	55
112	Key Factors in Alzheimer's Disease: $\hat{l}^2\hat{a}\in \mathbf{a}$ myloid Precursor Protein Processing, Metabolism and Intraneuronal Transport. Brain Pathology, 2001, 11, 1-11.	4.1	159
113	Lewy body variant of Alzheimer's disease. NeuroReport, 2000, 11, 3737-3741.	1.2	46
114	N-Terminally Truncated Aß Peptide Variants in Alzheimer's Disease. , 0, , 107-122.		5
115	Immunotherapy Targeting Amyloid-ß Peptides in Alzheimer's Disease. , 0, , 23-49.		3
116	Combined long-term enriched environment and caffeine supplementation improve memory function in C57Bl6 mice. European Archives of Psychiatry and Clinical Neuroscience, 0, , .	3.2	2