Edward W Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/436564/publications.pdf

Version: 2024-02-01

55 papers

3,141 citations

30 h-index 50 g-index

57 all docs 57 docs citations

57 times ranked

2670 citing authors

#	Article	IF	CITATIONS
1	An Analysis of the Novel Fluorocycline TP-6076 Bound to Both the Ribosome and Multidrug Efflux Pump AdeJ from Acinetobacter baumannii. MBio, 2022, 13, e0373221.	4.1	13
2	Structural and Functional Diversity of Resistance–Nodulation–Cell Division Transporters. Chemical Reviews, 2021, 121, 5378-5416.	47.7	48
3	Structural basis of transport and inhibition of the <i>Plasmodium falciparum</i> transporter PfFNT. EMBO Reports, 2021, 22, e51628.	4.5	13
4	Cryoelectron Microscopy Structures of AdeB Illuminate Mechanisms of Simultaneous Binding and Exporting of Substrates. MBio, 2021, 12, .	4.1	37
5	Cryo-EM as a tool to study bacterial efflux systems and the membrane proteome. Faculty Reviews, 2021, 10, 24.	3.9	5
6	Cryo-EM Structures of CusA Reveal a Mechanism of Metal-Ion Export. MBio, 2021, 12, .	4.1	15
7	Cryo-EM Determination of Eravacycline-Bound Structures of the Ribosome and the Multidrug Efflux Pump AdeJ of Acinetobacter baumannii. MBio, 2021, 12, e0103121.	4.1	29
8	Structural basis of transport and inhibition of the <i>Plasmodium falciparum</i> transporter PfFNT. EMBO Reports, 2021, 22, e53447.	4.5	3
9	Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport. PLoS Biology, 2021, 19, e3001370.	5.6	27
10	A †Build and Retrieve†methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 2021, 18, 69-75.	19.0	71
11	Cryo-EM Structures of a Gonococcal Multidrug Efflux Pump Illuminate a Mechanism of Drug Recognition and Resistance. MBio, 2020, 11 , .	4.1	50
12	Cryo-electron Microscopy Structure of the Acinetobacter baumannii 70S Ribosome and Implications for New Antibiotic Development. MBio, 2020, 11 , .	4.1	25
13	Structure and function of LCI1: a plasma membrane CO 2 channel in the Chlamydomonas CO 2 concentrating mechanism. Plant Journal, 2020, 102, 1107-1126.	5.7	17
14	A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids. PLoS Pathogens, 2020, 16, e1009119.	4.7	21
15	Title is missing!. , 2020, 16, e1009119.		O
16	Title is missing!. , 2020, 16, e1009119.		0
17	Title is missing!. , 2020, 16, e1009119.		O
18	Title is missing!. , 2020, 16, e1009119.		0

#	Article	IF	CITATIONS
19	Cryo-Electron Microscopy Structure of an Acinetobacter baumannii Multidrug Efflux Pump. MBio, 2019, 10, .	4.1	56
20	Structural and functional evidence that lipoprotein LpqN supports cell envelope biogenesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2019, 294, 15711-15723.	3. 4	14
21	MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11241-11246.	7.1	94
22	Crystallographic Analysis of the CusBA Heavy-Metal Efflux Complex of Escherichia coli. Methods in Molecular Biology, 2018, 1700, 59-70.	0.9	0
23	A cell-based infection assay identifies efflux pump modulators that reduce bacterial intracellular load. PLoS Pathogens, 2018, 14, e1007115.	4.7	35
24	Crystal structures of the <i>Burkholderia multivorans</i> hopanoid transporter HpnN. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6557-6562.	7.1	40
25	(S)-5-ethynyl-anabasine, a novel compound, is a more potent agonist than other nicotine alkaloids on the nematode Asu -ACR-16 receptor. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 12-22.	3.4	4
26	Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nature Communications, 2017, 8, 171.	12.8	69
27	The AbgT family: A novel class of antimetabolite transporters. Protein Science, 2016, 25, 322-337.	7.6	43
28	Emergence of a Potent Multidrug Efflux Pump Variant That Enhances <i>Campylobacter</i> Resistance to Multiple Antibiotics. MBio, 2016, 7, .	4.1	91
29	Crystal structure of a conserved domain in the intermembrane space region of the plastid division protein ARC6. Protein Science, 2016, 25, 523-529.	7.6	3
30	The Ascaris suum nicotinic receptor, ACR-16, as a drug target: Four novel negative allosteric modulators from virtual screening. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 60-73.	3.4	16
31	Heavy metal transport by the <scp>C</scp> us <scp>CFBA</scp> efflux system. Protein Science, 2015, 24, 1720-1736.	7.6	43
32	Crystal structure of the <i>Mycobacterium tuberculosis</i> transcriptional regulator Rv0302. Protein Science, 2015, 24, 1942-1955.	7.6	11
33	Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology. Nature Communications, 2015, 6, 6874.	12.8	35
34	Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps. Cell Reports, 2015, 11, 61-70.	6.4	44
35	Crystallization of Membrane Proteins by Vapor Diffusion. Methods in Enzymology, 2015, 557, 363-392.	1.0	14
36	Structural Basis for the Regulation of the MmpL Transporters of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2015, 290, 28559-28574.	3.4	29

#	Article	IF	Citations
37	Crystal Structure of the Open State of the Neisseria gonorrhoeae MtrE Outer Membrane Channel. PLoS ONE, 2014, 9, e97475.	2.5	51
38	Crystal Structure of the Neisseria gonorrhoeae MtrD Inner Membrane Multidrug Efflux Pump. PLoS ONE, 2014, 9, e97903.	2.5	65
39	Crystal structure of the <i>Campylobacter jejuni</i> CmeC outer membrane channel. Protein Science, 2014, 23, 954-961.	7.6	30
40	Bacterial Multidrug Efflux Transporters. Annual Review of Biophysics, 2014, 43, 93-117.	10.0	159
41	Crystal Structures of CusC Review Conformational Changes Accompanying Folding and Transmembrane Channel Formation. Journal of Molecular Biology, 2014, 426, 403-411.	4.2	36
42	Crystal Structure of the Transcriptional Regulator Rv0678 of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2014, 289, 16526-16540.	3.4	65
43	Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1047-1058.	4.0	72
44	Charged Amino Acids (R83, E567, D617, E625, R669, and K678) of CusA Are Required for Metal Ion Transport in the Cus Efflux System. Journal of Molecular Biology, 2012, 422, 429-441.	4.2	51
45	Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Nature, 2011, 470, 558-562.	27.8	201
46	The Cus efflux system removes toxic ions via a methionine shuttle. Protein Science, 2011, 20, 6-18.	7.6	61
47	Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature, 2010, 467, 484-488.	27.8	223
48	Crystal Structure of the Membrane Fusion Protein CusB from Escherichia coli. Journal of Molecular Biology, 2009, 393, 342-355.	4.2	111
49	Functional Cloning and Characterization of the Multidrug Efflux Pumps NorM from <i>Neisseria gonorrhoeae </i> and YdhE from <i>Escherichia coli </i> Antimicrobial Agents and Chemotherapy, 2008, 52, 3052-3060.	3.2	76
50	Ligandâ€transporter interaction in the AcrB multidrug efflux pump determined by fluorescence polarization assay. FEBS Letters, 2007, 581, 4972-4976.	2.8	54
51	Corrigendum to "Ligand-transporter interaction in the AcrB multidrug efflux pump determined by fluorescence polarization assay―[FEBS Lett. 581 (2007) 4972-4976]. FEBS Letters, 2007, 581, 5548-5548.	2.8	0
52	Conformation of the AcrB Multidrug Efflux Pump in Mutants of the Putative Proton Relay Pathway. Journal of Bacteriology, 2006, 188, 7290-7296.	2.2	117
53	A Periplasmic Drug-Binding Site of the AcrB Multidrug Efflux Pump: a Crystallographic and Site-Directed Mutagenesis Study. Journal of Bacteriology, 2005, 187, 6804-6815.	2.2	202
54	Structural Basis of Multiple Drug-Binding Capacity of the AcrB Multidrug Efflux Pump. Science, 2003, 300, 976-980.	12.6	372

#	Article	IF	CITATIONS
55	AcrB Multidrug Efflux Pump of <i>Escherichia coli</i> : Composite Substrate-Binding Cavity of Exceptional Flexibility Generates Its Extremely Wide Substrate Specificity. Journal of Bacteriology, 2003, 185, 5657-5664.	2.2	176