
Fabio Sangalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/436520/publications.pdf Version: 2024-02-01

FARIO SANCALLI

#	Article	lF	CITATIONS
1	Recellularization of Well-Preserved Acellular Kidney Scaffold Using Embryonic Stem Cells. Tissue Engineering - Part A, 2014, 20, 1486-1498.	3.1	169
2	Effects of combined ACE inhibitor and angiotensin II antagonist treatment in human chronic nephropathies. Kidney International, 2003, 63, 1094-1103.	5.2	167
3	Pathophysiologic Implications of Reduced Podocyte Number in a Rat Model of Progressive Glomerular Injury. American Journal of Pathology, 2006, 168, 42-54.	3.8	134
4	Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. American Journal of Physiology - Renal Physiology, 2009, 297, F1448-F1456.	2.7	114
5	ACE inhibition reduces glomerulosclerosis and regenerates glomerular tissue in a model of progressive renal disease. Kidney International, 2006, 69, 1124-1130.	5.2	106
6	Podocyte Repopulation Contributes to Regression of Glomerular Injury Induced by Ace Inhibition. American Journal of Pathology, 2009, 174, 797-807.	3.8	92
7	Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects. American Journal of Physiology - Renal Physiology, 2013, 304, F808-F819.	2.7	90
8	MicroRNA-324-3p Promotes Renal Fibrosis and Is a Target of ACE Inhibition. Journal of the American Society of Nephrology: JASN, 2012, 23, 1496-1505.	6.1	84
9	Effect of angiotensin II antagonism on the regression of kidney disease in the rat. Kidney International, 2002, 62, 885-894.	5.2	76
10	ACE inhibition improves glomerular size selectivity in patients with idiopathic membranous nephropathy and persistent nephrotic syndrome. American Journal of Kidney Diseases, 2000, 35, 381-391.	1.9	71
11	Glomerular size-selective dysfunction in NIDDM is not ameliorated by ACE inhibition or by calcium channel blockade. Kidney International, 1999, 55, 984-994.	5.2	51
12	Thrombospondinâ€1 is part of a Slugâ€independent motility and metastatic program in cutaneous melanoma, in association with <scp>VEGFR</scp> â€1 and <scp>FGF</scp> â€2. Pigment Cell and Melanoma Research, 2015, 28, 73-81.	3.3	45
13	Beneficial Effect of TGFβ Antagonism in Treating Diabetic Nephropathy Depends on When Treatment Is Started. Nephron Experimental Nephrology, 2006, 104, e158-e168.	2.2	43
14	Prevention of Renal Injury in Diabetic MWF Rats by Angiotensin II Antagonism. Nephron Experimental Nephrology, 1998, 6, 28-38.	2.2	40
15	Regulator of G-protein signaling 5 (RGS5) protein: a novel marker of cancer vasculature elicited and sustained by the tumor's proangiogenic microenvironment. Cellular and Molecular Life Sciences, 2012, 69, 1167-1178.	5.4	40
16	ACE inhibition and ANG II receptor blockade improve glomerular size-selectivity in IgA nephropathy. American Journal of Physiology - Renal Physiology, 1999, 276, F457-F466.	2.7	39
17	Regression of Renal Disease by Angiotensin II Antagonism Is Caused by Regeneration of Kidney Vasculature. Journal of the American Society of Nephrology: JASN, 2016, 27, 699-705.	6.1	36
18	Beneficial effects of calcium channel blockade on acute glomerular hemodynamic changes induced by cyclosporine. American Journal of Kidney Diseases, 1999, 33, 267-275.	1.9	34

Fabio Sangalli

#	Article	IF	CITATIONS
19	Post-transplant renal artery stenosis: The hemodynamic response to revascularization. Kidney International, 2001, 60, 309-318.	5.2	31
20	Shear Stress Reverses Dome Formation in Confluent Renal Tubular Cells. Cellular Physiology and Biochemistry, 2011, 28, 673-682.	1.6	25
21	Copper-dependent biological effects ofÂparticulate matter produced by brake systems on lung alveolar cells. Archives of Toxicology, 2020, 94, 2965-2979.	4.2	25
22	Effect of high dose ramipril with or without indomethacin on glomerular selectivity. Kidney International, 2002, 62, 1010-1019.	5.2	23
23	Albumin concentration in the Bowman's capsule: Multiphoton microscopy vs micropuncture technique. Kidney International, 2007, 72, 1410-1411.	5.2	22
24	Effect of ACE inhibition on glomerular permselectivity and tubular albumin concentration in the renal ablation model. American Journal of Physiology - Renal Physiology, 2011, 300, F1291-F1300.	2.7	13
25	Effects of Rosuvastatin on Glomerular Capillary Size-Selectivity Function in Rats with Renal Mass Ablation. American Journal of Nephrology, 2007, 27, 630-638.	3.1	12
26	Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Scientific Reports, 2021, 11, 23580.	3.3	10
27	Automatic cyst and kidney segmentation in autosomal dominant polycystic kidney disease: Comparison of U-Net based methods. Computers in Biology and Medicine, 2022, 146, 105431.	7.0	3
28	Tumor vascular remodeling by thrombospondin-1 enhances drug delivery and antineoplastic activity. Matrix Biology, 2021, 103-104, 22-36.	3.6	2