
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4364963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoinduced biochemical activity of fullerene carboxylic acid. Journal of the American Chemical Society, 1993, 115, 7918-7919.	13.7	603
2	Synthesis of [8]Cycloparaphenylene from a Square‣haped Tetranuclear Platinum Complex. Angewandte Chemie - International Edition, 2010, 49, 757-759.	13.8	497
3	Selective and Random Syntheses of [<i>n</i>]Cycloparaphenylenes (<i>n</i> = 8–13) and Size Dependence of Their Electronic Properties. Journal of the American Chemical Society, 2011, 133, 8354-8361.	13.7	445
4	Precision Polymer Synthesis by Degenerative Transfer Controlled/Living Radical Polymerization Using Organotellurium, Organostibine, and Organobismuthine Chain-Transfer Agents. Chemical Reviews, 2009, 109, 5051-5068.	47.7	408
5	Sizeâ€Selective Encapsulation of C ₆₀ by [10]Cycloparaphenylene: Formation of the Shortest Fullereneâ€Peapod. Angewandte Chemie - International Edition, 2011, 50, 8342-8344.	13.8	407
6	In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chemistry and Biology, 1995, 2, 385-389.	6.0	353
7	Organotellurium Compounds as Novel Initiators for Controlled/Living Radical Polymerizations. Synthesis of Functionalized Polystyrenes and End-Group Modifications. Journal of the American Chemical Society, 2002, 124, 2874-2875.	13.7	252
8	Organoplatinumâ€Mediated Synthesis of Cyclic Ï€â€Conjugated Molecules: Towards a New Era of Threeâ€Dimensional Aromatic Compounds. Chemical Record, 2014, 14, 84-100.	5.8	204
9	Size―and Orientationâ€5elective Encapsulation of C ₇₀ by Cycloparaphenylenes. Chemistry - A European Journal, 2013, 19, 14061-14068.	3.3	197
10	Synthesis and Characterization of [5]Cycloparaphenylene. Journal of the American Chemical Society, 2014, 136, 2284-2287.	13.7	196
11	Highly Versatile Organostibine Mediators for Living Radical Polymerization. Journal of the American Chemical Society, 2004, 126, 13908-13909.	13.7	189
12	Tailored Synthesis of Structurally Defined Polymers by Organotellurium-Mediated Living Radical Polymerization (TERP):Â Synthesis of Poly(meth)acrylate Derivatives and Their Di- and Triblock Copolymers. Journal of the American Chemical Society, 2002, 124, 13666-13667.	13.7	187
13	Biological Activity of Water-Soluble Fullerenes. Structural Dependence of DNA Cleavage, Cytotoxicity, and Enzyme Inhibitory Activities Including HIV-Protease Inhibition. Bulletin of the Chemical Society of Japan, 1996, 69, 2143-2151.	3.2	185
14	Mechanism-Based Invention of High-Speed Living Radical Polymerization Using Organotellurium Compounds and Azo-Initiators. Journal of the American Chemical Society, 2003, 125, 8720-8721.	13.7	183
15	Organotellurium-Mediated Controlled/Living Radical Polymerization Initiated by Direct Câ^'Te Bond Photolysis. Journal of the American Chemical Society, 2009, 131, 2100-2101.	13.7	173
16	Development of organotellurium-mediated and organostibine-mediated living radical polymerization reactions. Journal of Polymer Science Part A, 2006, 44, 1-12.	2.3	165
17	Recent progress in the use of photoirradiation in living radical polymerization. Polymer, 2013, 54, 981-994.	3.8	165
18	[3 + 2] and [4 + 2] Cycloadditions of fullerene C60. Journal of the American Chemical Society, 1993, 115, 1594-1595	13.7	163

#	Article	IF	CITATIONS
19	Size-dependent fluorescence properties of [n]cycloparaphenylenes (n = 8–13), hoop-shaped Ï€-conjugated molecules. Physical Chemistry Chemical Physics, 2012, 14, 14585.	2.8	150
20	Thermal Reactions of Dipolar Trimethylenemethane Species. Accounts of Chemical Research, 2002, 35, 867-877.	15.6	146
21	Highly Controlled Living Radical Polymerization through Dual Activation of Organobismuthines. Angewandte Chemie - International Edition, 2007, 46, 1304-1306.	13.8	140
22	Synthesis and physical properties of a ball-like three-dimensional π-conjugated molecule. Nature Communications, 2013, 4, 2694.	12.8	139
23	Synthesis, Characterization, and Properties of [4]Cycloâ€2,7â€pyrenylene: Effects of Cyclic Structure on the Electronic Properties of Pyrene Oligomers. Angewandte Chemie - International Edition, 2014, 53, 6430-6434.	13.8	138
24	Thermo-Responsive Diblock Copolymers of Poly(<i>N</i> -isopropylacrylamide) and Poly(<i>N</i> -vinyl-2-pyrroridone) Synthesized via Organotellurium-Mediated Controlled Radical Polymerization (TERP). Macromolecules, 2007, 40, 5907-5915.	4.8	127
25	A Systematic Study on Activation Processes in Organotellurium-Mediated Living Radical Polymerizations of Styrene, Methyl Methacrylate, Methyl Acrylate, and Vinyl Acetate. Macromolecules, 2006, 39, 4671-4679.	4.8	121
26	Practical Synthesis of [<i>n</i>]Cycloparaphenylenes (<i>n</i> =5, 7–12) by H ₂ SnCl ₄ â€Mediated Aromatization of 1,4â€Dihydroxycycloâ€2,5â€diene Precursors. Chemistry - A European Journal, 2015, 21, 5742-5749.	3.3	121
27	Selective Synthesis and Crystal Structure of [10]Cycloparaphenylene. Organic Letters, 2012, 14, 3284-3287.	4.6	119
28	Partial Charge Transfer in the Shortest Possible Metallofullerene Peapod, La@C ₈₂ âŠ,[11]Cycloparaphenylene. Chemistry - A European Journal, 2014, 20, 14403-14409.	3.3	118
29	Highly Controlled Synthesis of Poly(N-vinylpyrrolidone) and Its Block Copolymers by Organostibine-Mediated Living Radical Polymerization. Macromolecules, 2006, 39, 5259-5265.	4.8	113
30	In-Plane Aromaticity in Cycloparaphenylene Dications: A Magnetic Circular Dichroism and Theoretical Study. Journal of the American Chemical Society, 2015, 137, 82-85.	13.7	112
31	Selective Synthesis of [6]-, [8]-, and [10]Cycloparaphenylenes. Chemistry Letters, 2013, 42, 621-623.	1.3	100
32	Isolation and Characterization of the Cycloparaphenylene Radical Cation and Dication. Angewandte Chemie - International Edition, 2013, 52, 13722-13726.	13.8	99
33	Iterative Glycosylation of 2-Deoxy-2-aminothioglycosides and Its Application to the Combinatorial Synthesis of Linear Oligoglucosamines. Angewandte Chemie - International Edition, 2004, 43, 2145-2148.	13.8	98
34	Langmuir-Blodgett Film of Amphiphilic C60 Carboxylic Acid. Langmuir, 1995, 11, 660-665.	3.5	89
35	Gram-Scale Syntheses and Conductivities of [10]Cycloparaphenylene and Its Tetraalkoxy Derivatives. Journal of the American Chemical Society, 2017, 139, 18480-18483.	13.7	87
36	Synthesis and Characterization of [<i>n</i>]CPP (<i>n</i> = 5, 6, 8, 10, and 12) Radical Cation and Dications: Size-Dependent Absorption, Spin, and Charge Delocalization. Journal of the American Chemical Society, 2016, 138, 338-344.	13.7	86

#	Article	IF	CITATIONS
37	Synthetic and Theoretical Studies on Group-Transfer Imidoylation of Organotellurium Compounds. Remarkable Reactivity of Isonitriles in Comparison with Carbon Monoxide in Radical-Mediated Reactions. Journal of the American Chemical Society, 2001, 123, 3697-3705.	13.7	83
38	Photoinduced Switching from Living Radical Polymerization to a Radical Coupling Reaction Mediated by Organotellurium Compounds. Journal of the American Chemical Society, 2012, 134, 5536-5539.	13.7	82
39	Simple diastereoselectivity of the aldol reaction of persubstituted enolates. Stereoselective construction of quaternary centers. Journal of Organic Chemistry, 1991, 56, 2098-2106.	3.2	79
40	Electrochemistry of Chalcogenoglycosides. Rational Design of Iterative Glycosylation Based on Reactivity Control of Glycosyl Donors and Acceptors by Oxidation Potentialsâ€. Journal of Organic Chemistry, 2002, 67, 8584-8592.	3.2	79
41	Practical Protocols for Organotellurium-Mediated Living Radical Polymerization by in Situ Generated Initiators from AIBN and Ditellurides. Macromolecules, 2003, 36, 3793-3796.	4.8	77
42	Properties of Sizeable [<i>n</i>]Cycloparaphenylenes as Molecular Models of Singleâ€Wall Carbon Nanotubes Elucidated by Raman Spectroscopy: Structural and Electronâ€Transfer Responses under Mechanical Stress. Angewandte Chemie - International Edition, 2014, 53, 7033-7037.	13.8	77
43	A New, Iterative Strategy of Oligosaccharide Synthesis Based on Highly Reactive β-Bromoglycosides Derived from Selenoglycosides. Organic Letters, 2001, 3, 3867-3870.	4.6	74
44	Termination Mechanism in the Radical Polymerization of Methyl Methacrylate and Styrene Determined by the Reaction of Structurally Well-Defined Polymer End Radicals. Macromolecules, 2015, 48, 6450-6456.	4.8	74
45	Use of methylenecyclopropanone ketals for cyclopentane synthesis. A new efficient thermal [3 + 2] cycloaddition. Journal of the American Chemical Society, 1989, 111, 7285-7286.	13.7	70
46	Photocytotoxicity of Water-soluble Fullerene Derivatives. Bioscience, Biotechnology and Biochemistry, 1996, 60, 1359-1361.	1.3	70
47	Synthesis of optically active dendritic binaphthols and their metal complexes for asymmetric catalysis. Tetrahedron Letters, 1998, 39, 3783-3786.	1.4	70
48	Pore Formation in Poly(divinylbenzene) Networks Derived from Organotellurium-Mediated Living Radical Polymerization. Macromolecules, 2009, 42, 1270-1277.	4.8	69
49	Synthesis of structurally controlled hyperbranched polymers using a monomer having hierarchical reactivity. Nature Communications, 2017, 8, 1863.	12.8	66
50	Kinetic Study on Role of Ditelluride in Organotellurium-Mediated Living Radical Polymerization (TERP). Macromolecules, 2007, 40, 1881-1885.	4.8	64
51	Selective and Gram-Scale Synthesis of [6]Cycloparaphenylene. Synlett, 2015, 26, 1615-1619.	1.8	63
52	A new synthetic route to substituted quinones by radical-mediated coupling of organotellurium compounds with quinones. Tetrahedron, 2002, 58, 6805-6813.	1.9	62
53	Organotellurium-Mediated Living Radical Polymerization in Miniemulsion. Macromolecules, 2007, 40, 9208-9211.	4.8	62
54	Development of an Arylthiobismuthine Cocatalyst in Organobismuthine-Mediated Living Radical Polymerization: Applications for Synthesis of Ultrahigh Molecular Weight Polystyrenes and Polyacrylates. Journal of the American Chemical Society, 2009, 131, 2508-2513.	13.7	62

#	Article	IF	CITATIONS
55	Shortest Doubleâ€Walled Carbon Nanotubes Composed of Cycloparaphenylenes. ChemPlusChem, 2017, 82, 1015-1020.	2.8	61
56	Rigid Crosslinked Polyacrylamide Monoliths with Wellâ€Defined Macropores Synthesized by Living Polymerization. Macromolecular Rapid Communications, 2009, 30, 986-990.	3.9	59
57	Tetracyclo(2,7-carbazole)s: Diatropicity and Paratropicity of Inner Regions of Nanohoops. Journal of Organic Chemistry, 2016, 81, 3356-3363.	3.2	58
58	Properties of Triplet-Excited [<i>n</i>]Cycloparaphenylenes (<i>n</i> = 8–12): Excitation Energies Lower than Those of Linear Oligomers and Polymers. Journal of Physical Chemistry A, 2014, 118, 4527-4532.	2.5	56
59	Reversible generation of glycosyl radicals from telluroglycosides under photochemical and thermal conditions. Tetrahedron Letters, 1999, 40, 2339-2342.	1.4	55
60	Synthesis, Characterization, and Properties of [4]Cycloâ€2,7â€pyrenylene: Effects of Cyclic Structure on the Electronic Properties of Pyrene Oligomers. Angewandte Chemie, 2014, 126, 6548-6552.	2.0	54
61	Supramolecular Fullerene Polymers and Networks Directed by Molecular Recognition between Calix[5]arene and C ₆₀ . Chemistry - A European Journal, 2014, 20, 16138-16146.	3.3	52
62	Thermal Hetero [3 + 2] Cycloaddition of Dipolar Trimethylenemethane to O-Alkyloximes. Straightforward Synthetic Routes to Substituted Pyrrolidines and Prolines. Journal of Organic Chemistry, 1998, 63, 1694-1703.	3.2	51
63	Tertiary phosphines, P-chiral phosphinites and phosphonic acid esters bearing fullerene substituent. Metal complexes and redox properties. Tetrahedron, 1996, 52, 5091-5102.	1.9	50
64	Controlled Alternating Copolymerization of (Meth)acrylates and Vinyl Ethers by Using Organoheteroatomâ€Mediated Living Radical Polymerization. Macromolecular Rapid Communications, 2011, 32, 893-898.	3.9	50
65	Thermal hetero [3 + 2] cycloaddition approach to functionalized tetrahydrofurans. Journal of Organic Chemistry, 1990, 55, 5553-5555.	3.2	49
66	Optimization of Organotellurium Transfer Agents for Highly Controlled Living Radical Polymerization. Macromolecules, 2008, 41, 527-529.	4.8	49
67	Enhancement of the Quinoidal Character for Smaller [<i>n</i>]Cycloparaphenylenes Probed by Raman Spectroscopy. ChemPhysChem, 2013, 14, 1570-1572.	2.1	49
68	Radical Ions of Cycloparaphenylenes: Size Dependence Contrary to the Neutral Molecules. Journal of Physical Chemistry Letters, 2014, 5, 2302-2305.	4.6	48
69	Ligandâ€Controlled Synthesis of [3]―and [4]Cycloâ€9,9â€dimethylâ€2,7â€fluorenes through Triangle―and Squareâ€&haped Platinum Intermediates. Chemistry - A European Journal, 2015, 21, 18939-18943.	3.3	48
70	Synthesis of vinylic C-glycosides from telluroglycosides. Addition of photochemically and thermally generated glycosyl radicals to alkynes. Tetrahedron Letters, 1999, 40, 2343-2346.	1.4	46
71	Synthesis and Physical Properties of Polyfluorinated Cycloparaphenylenes. Organic Letters, 2018, 20, 5973-5976.	4.6	46
72	Synthesis and [2 + 2] Cycloaddition of Dimethyleneketene Acetals. Reaction with C60 and Facile Hydrolysis of the C-C Bond Connected to C60. Journal of the American Chemical Society, 1994, 116, 1123-1124.	13.7	45

#	Article	IF	CITATIONS
73	Dialkylphosphates as Stereodirecting Protecting Groups in Oligosaccharide Synthesis. Angewandte Chemie - International Edition, 2006, 45, 7575-7578.	13.8	45
74	Synthesis of propellanes by "exocyclic―transannular cycloaddition of olefinic methylenecyclopropanes. Tetrahedron, 1989, 45, 3081-3088.	1.9	44
75	Novel Group-Transfer Radical Reactions with Organotelluriums. Synlett, 2004, 2004, 1875-1890.	1.8	44
76	Regioselective Synthesis and Characterization of Multinuclear Convexâ€Bound Rutheniumâ€[<i>n</i>]Cycloparaphenylene (<i>n</i> =5 and 6) Complexes. Angewandte Chemie - International Edition, 2016, 55, 302-306.	13.8	44
77	A single electron transfer pathway in the [3+2] cycloaddition of dipolar trimethylenemethane with olefins. Journal of the American Chemical Society, 1993, 115, 5344-5345.	13.7	43
78	Regioselective and endo-stereoselective [3 + 2] cycloaddition of dipolar trimethylenemethane to electron-deficient olefin. Journal of the American Chemical Society, 1992, 114, 8707-8708.	13.7	42
79	Quantitative Analysis of the Effect of Azo Initiators on the Structure of α-Polymer Chain Ends in Degenerative Chain-Transfer-Mediated Living Radical Polymerization Reactions. Macromolecules, 2011, 44, 8388-8397.	4.8	42
80	Controlled Copolymerization of 1-Octene and (Meth)acrylates via Organotellurium-Mediated Living Radical Polymerization (TERP). Macromolecules, 2012, 45, 8998-9003.	4.8	42
81	Synthesis of [3.3.3]propellanes by â€~exocyclic' transannular cycloaddition of olefinic methylenecyclopropanes. Journal of the Chemical Society Chemical Communications, 1988, , 1112-1113.	2.0	41
82	O-Glycosidation of Telluroglycoside by Electrochemical Oxidation. Chemistry Letters, 1997, 26, 111-112.	1.3	41
83	Novel Group-Transfer Three-Component Coupling of Silyltellurides, Carbonyl Compounds, and Isocyanides. Angewandte Chemie - International Edition, 2000, 39, 3669-3671.	13.8	40
84	Combinatorial Synthesis of an Oligosaccharide Library by Using β-Bromoglycoside-Mediated Iterative Glycosylation of Selenoglycosides: Rapid Expansion of Molecular Diversity with Simple Building Blocks. Chemistry - A European Journal, 2005, 11, 6159-6174.	3.3	40
85	Fabrication of highly crosslinked methacrylate-based polymer monoliths with well-defined macropores via living radical polymerization. Polymer, 2011, 52, 4644-4647.	3.8	40
86	Bromination of Cycloparaphenylenes: Strainâ€Induced Siteâ€Selective Bisâ€Addition and Its Application for Lateâ€Stage Functionalization. Angewandte Chemie - International Edition, 2017, 56, 10428-10432.	13.8	40
87	Reversible generation of trimethylenemethanes by mild thermolysis of dialkoxymethylenecyclopropanes. Journal of the American Chemical Society, 1991, 113, 3183-3184.	13.7	39
88	Termination Mechanism of the Radical Polymerization of Acrylates. Macromolecular Rapid Communications, 2016, 37, 506-513.	3.9	39
89	Controlled Radical Polymerization of Ethylene Using Organotellurium Compounds. Angewandte Chemie - International Edition, 2018, 57, 305-309.	13.8	39
90	Radical-mediated imidoylation of telluroglycosides. Insertion of isonitriles into the glycosidic carbonî—,tellurium bond. Tetrahedron Letters, 1999, 40, 2347-2350.	1.4	38

#	Article	IF	CITATIONS
91	Convergent Synthesis of Silylated Allylic Alcohols by a Stereoselective Domino, Sequential Radical-Coupling Reaction. Angewandte Chemie - International Edition, 2002, 41, 1407-1409.	13.8	38
92	Synthesis of Structurally Wellâ€Defined Telechelic Polymers by Organostibineâ€Mediated Living Radical Polymerization: In Situ Generation of Functionalized Chainâ€Transfer Agents and Selective ωâ€Endâ€Group Transformations. Chemistry - A European Journal, 2009, 15, 1018-1029.	3.3	38
93	Controlled random and alternating copolymerization of (meth)acrylates, acrylonitrile, and (meth)acrylamides with vinyl ethers by organotelluriumâ€, organostibineâ€, and organobismuthineâ€mediated living radical polymerization reactions. Journal of Polymer Science Part A, 2012. 50. 2254-2264.	2.3	38
94	Chemical derivatization of organofullerenes through oxidation, reduction, and carbon-oxygen and carbon-carbon bond-forming reactions. Journal of Organic Chemistry, 1993, 58, 4796-4798.	3.2	37
95	Synthesis of structurally well-controlled ω-vinylidene functionalized poly(alkyl methacrylate)s and polymethacrylonitrile by organotellurium, organostibine, and organobismuthine-mediated living radical polymerizations. Reactive and Functional Polymers, 2009, 69, 416-423.	4.1	37
96	A Diversity-Oriented Synthesis ofα-Amino Acid Derivatives by a Silyltelluride-Mediated Radical Coupling Reaction of Imines and Isonitriles. Angewandte Chemie - International Edition, 2003, 42, 117-120.	13.8	36
97	Precision Synthesis of Hybrid Block Copolymers by Organotelluriumâ€Mediated Successive Living Radical and Cationic Polymerizations. Chemistry - an Asian Journal, 2011, 6, 445-451.	3.3	36
98	Tertiary phosphines and P-chiral phosphinites bearing a fullerene substituent. Journal of the Chemical Society Chemical Communications, 1994, , 2093.	2.0	35
99	Glycosylation with telluroglycosides. Stereoselective construction of α- and β-anomers. Tetrahedron Letters, 1998, 39, 7905-7908.	1.4	35
100	Organotellurium-mediated living radical polymerization under photoirradiation by a low-intensity light-emitting diode. Beilstein Journal of Organic Chemistry, 2013, 9, 1607-1612.	2.2	35
101	Living Ab Initio Emulsion Polymerization of Methyl Methacrylate in Water Using a Waterâ€Soluble Organotellurium Chain Transfer Agent under Thermal and Photochemical Conditions. Angewandte Chemie - International Edition, 2018, 57, 962-966.	13.8	35
102	Stereochemistry of the fluoride catalyzed aldol reaction of enol silyl ethers. Evidence for another non-chelate transition state. Tetrahedron Letters, 1988, 29, 2207-2210.	1.4	34
103	New synthesis of α-acyl imines by radical-mediated group-transfer imidoylation of acyl tellurides with isonitriles. Tetrahedron Letters, 2000, 41, 7517-7520.	1.4	33
104	Controlled Copolymerization of Acrylate and 6-Methyleneundecane by Organotellurium-Mediated Living Radical Polymerization (TERP). Macromolecules, 2012, 45, 2989-2994.	4.8	33
105	Invention of organotellurium and organostibine mediators for highly controlled degenerative transfer polymerization. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2005, 81, 117-128.	3.8	32
106	Applications of metalated cyclopropenone ketals in a general synthesis of cyclopropenones. An efficient synthesis of the antibiotic penitricin. Journal of Organic Chemistry, 1989, 54, 4727-4729.	3.2	31
107	Synthesis and physical properties of [4]cyclo-3,7-dibenzo[<i>b</i> , <i>d</i>]thiophene and its <i>S</i> , <i>S</i> -dioxide. Canadian Journal of Chemistry, 2017, 95, 351-356.	1.1	31
108	Chameleon-like behaviour of cyclo[n]paraphenylenes in complexes with C ₇₀ : on their impressive electronic and structural adaptability as probed by Raman spectroscopy. Faraday Discussions, 2014, 173, 157-171.	3.2	30

#	Article	IF	CITATIONS
109	From linear to cyclic oligoparaphenylenes: electronic and molecular changes traced in the vibrational Raman spectra and reformulation of the bond length alternation pattern. Physical Chemistry Chemical Physics, 2016, 18, 11683-11692.	2.8	30
110	Mechanism of Cu(I)/Cu(0)-Mediated Reductive Coupling Reactions of Bromine-Terminated Polyacrylates, Polymethacrylates, and Polystyrene. ACS Macro Letters, 2016, 5, 248-252.	4.8	30
111	Mechanism and Kinetics of Organostibine-Mediated Living Radical Polymerization of Styrene. Zeitschrift Fur Physikalische Chemie, 2005, 219, 283-293.	2.8	29
112	Arylthiols as Highly Chemoselective and Environmentally Benign Radical Reducing Agents. Journal of Organic Chemistry, 2008, 73, 7300-7304.	3.2	28
113	Size Dependence of [<i>n</i>]Cycloparaphenylenes (<i>n</i> =5–12) in Electrochemical Oxidation. Chemistry - an Asian Journal, 2016, 11, 1793-1797.	3.3	28
114	Synthesis of Wellâ€defined Amphiphilic Block Copolymers by Organotelluriumâ€Mediated Living Radical Polymerization (TERP). Macromolecular Rapid Communications, 2011, 32, 1576-1582.	3.9	27
115	Synthesis of Concentrated Polymer Brushes via Surface-Initiated Organotellurium-Mediated Living Radical Polymerization. Macromolecules, 2013, 46, 6777-6785.	4.8	27
116	Photoactivation of Organotellurium Compounds in Precision Polymer Synthesis: Controlled Radical Polymerization and Radical Coupling Reactions. Bulletin of the Chemical Society of Japan, 2020, 93, 287-298.	3.2	27
117	Phenyltellanyl Triflate (PhTeOTf) as a Powerful Tellurophilic Activator in the Friedel–Crafts Reaction. Chemistry Letters, 2008, 37, 650-651.	1.3	26
118	Controlled synthesis of hydrophilic concentrated polymer brushes and their friction/lubrication properties in aqueous solutions. Journal of Polymer Science Part A, 2011, 49, 5284-5292.	2.3	26
119	Control of the Termination Mechanism in Radical Polymerization by Viscosity: Selective Disproportionation in Viscous Media. Chemistry - A European Journal, 2017, 23, 1299-1305.	3.3	26
120	Oneâ€Step Synthesis of Dendritic Highly Branched Polystyrenes by Organotelluriumâ€Mediated Copolymerization of Styrene and a Dienyl Telluride Monomer. Angewandte Chemie - International Edition, 2019, 58, 3952-3956.	13.8	26
121	Highly Efficient and Chemoselective Reductive Bis-silylation of Quinones by Silyltellurides. Organic Letters, 2000, 2, 3671-3673.	4.6	25
122	Expanding the Scope of Controlled Radical Polymerization via Cobalt–Tellurium Radical Exchange Reaction. ACS Macro Letters, 2014, 3, 114-118.	4.8	24
123	Visible light-induced free radical promoted cationic polymerization using organotellurium compounds. Polymer Chemistry, 2018, 9, 5639-5643.	3.9	24
124	Hydrostannation of Cyclopropene. Strain-Driven Radical Addition Reaction. Chemistry Letters, 1994, 23, 1889-1892.	1.3	23
125	Radical-Mediated Synthesis of Substituted Quinones with Organotellurium Compounds. Chemistry Letters, 2000, 29, 1234-1235.	1.3	23
126	Generation of Carbanions through Stibine–Metal and Bismuthine–Metal Exchange Reactions and Its Applications to Precision Synthesis of ωâ€Endâ€Functionalized Polymers. Chemistry - A European Journal, 2011, 17, 5272-5280.	3.3	23

#	Article	IF	CITATIONS
127	A new, practical synthesis of organotellurium compounds from organic halides and silyl tellurides. Remarkable effects of polar solvents and leaving groups. Tetrahedron Letters, 2001, 42, 5061-5064.	1.4	22
128	Highly Efficient Synthesis of Oligo-N-acetylglucosamines by Iterative Glycosylation of Di- and Tetrachlorophthaloyl-protected Thioglucosamines. Chemistry Letters, 2005, 34, 1556-1557.	1.3	22
129	Strainâ€Induced Double Carbon–Carbon Bond Activations of Cycloparaphenylenes by a Platinum Complex: Application to the Synthesis of Cyclic Diketones. Angewandte Chemie - International Edition, 2018, 57, 11418-11421.	13.8	22
130	Modular Synthesis of Mid-Chain-Functionalized Polymers by Photoinduced Diene- and Styrene-Assisted Radical Coupling Reaction of Polymer-End Radicals. Macromolecules, 2014, 47, 582-588.	4.8	21
131	The Raman fingerprint of cyclic conjugation: the case of the stabilization of cations and dications in cycloparaphenylenes. Chemical Science, 2016, 7, 3494-3499.	7.4	21
132	Practical Synthesis of Telluroglycosides. Synlett, 1996, 1996, 929-930.	1.8	20
133	Stereoselective Synthesis of Multisubstituted Alkenes via Conformationally Labile Alkenyllithium Species. Organic Letters, 2005, 7, 909-911.	4.6	20
134	Near-Infrared Fluorescence from In-Plane-Aromatic Cycloparaphenylene Dications. Journal of Physical Chemistry A, 2018, 122, 5162-5167.	2.5	20
135	A Concise Synthetic Route to Cyclopentenes by[3+ 2] Cycloaddition of Dipolar Trimethylenemethane to Alkynes. Angewandte Chemie International Edition in English, 1995, 34, 2154-2156.	4.4	19
136	Synthesis and Reactions of Carbon Nanohoop. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 1147-1158.	0.1	19
137	Size-Dependent Relaxation Processes of Photoexcited [<i>n</i>]Cycloparaphenylenes (<i>n</i> = 5–12): Significant Contribution of Internal Conversion in Smaller Rings. Journal of Physical Chemistry A, 2019, 123, 4737-4742.	2.5	19
138	Selective and Gram-Scale Synthesis of [8]Cycloparaphenylene. Journal of Organic Chemistry, 2020, 85, 2082-2091.	3.2	19
139	A New Method for the Synthesis of Stannyl Ethers by Acid-Catalyzed Reaction of Alcohols with Allyltributylstannane. Chemistry Letters, 2002, 31, 152-153.	1.3	18
140	Solubilization of C ₆₀ by micellization with a thermoresponsive block copolymer in water: Characterization, singlet oxygen generation, and DNA photocleavage. Journal of Polymer Science Part A, 2011, 49, 2761-2770.	2.3	18
141	Synthesis of Structurally Controlled, Highly Branched Polymethacrylates by Radical Polymerization through the Design of a Monomer Having Hierarchical Reactivity. Macromolecules, 2020, 53, 3209-3216.	4.8	17
142	Acyclic Telluroiminium Salts:Â Isolation and Characterization. Journal of the American Chemical Society, 2004, 126, 16696-16697.	13.7	16
143	Telluration of seleno- and chloroiminium salts leading to various telluroamides, and their structure and NMR properties. Journal of Organometallic Chemistry, 2007, 692, 129-135.	1.8	16
144	Controlled Polymerization of Protic Ionic Liquid Monomer by ARGETâ€ATRP and TERP. Macromolecular Rapid Communications, 2014, 35, 642-648.	3.9	16

#	Article	IF	CITATIONS
145	Bromination of Cycloparaphenylenes: Strainâ€Induced Siteâ€5elective Bisâ€Addition and Its Application for Lateâ€5tage Functionalization. Angewandte Chemie, 2017, 129, 10564-10568.	2.0	16
146	Short-step Synthesis of Large Cycloparaphenylenes. Chemistry Letters, 2018, 47, 1108-1111.	1.3	16
147	Thermal Hetero [3 + 2] Cycloaddition of Dipolar Trimethylenemethane toN-Sulfonyl andN-Acyl Imines. Synthesis ofγ-Amino Acid Derivatives. Chemistry Letters, 1999, 28, 879-880.	1.3	15
148	The Effect of Viscosity on the Diffusion and Termination Reaction of Organic Radical Pairs. Chemistry - A European Journal, 2019, 25, 9846-9850.	3.3	15
149	1,3-Diradicals Embedded in Curved Paraphenylene Units: Singlet versus Triplet State and In-Plane Aromaticity. Journal of the American Chemical Society, 2021, 143, 7426-7439.	13.7	15
150	Highly Controlled Organotellurium-Mediated Living Radical Polymerization (TERP) in Ionic Liquids (ILs). The New Role of ILs in Radical Reactions. ACS Macro Letters, 2012, 1, 146-149.	4.8	13
151	Organotellurium-Mediated Radical Polymerization under Photo Irradiation. ACS Symposium Series, 2015, , 295-309.	0.5	13
152	Controlled Radical Polymerization of Ethylene Using Organotellurium Compounds. Angewandte Chemie, 2018, 130, 311-315.	2.0	13
153	Synthesis of Poly(<i>N</i> â€vinylamide)s and Poly(vinylamine)s and Their Block Copolymers by Organotelluriumâ€Mediated Radical Polymerization. Angewandte Chemie - International Edition, 2019, 58, 7113-7116.	13.8	13
154	SOMO–HOMO Conversion in Triplet Carbenes. Organic Letters, 2021, 23, 4955-4959.	4.6	13
155	Practical synthesis of dendritic hyperbranched polymers by reversible deactivation radical polymerization. Polymer Journal, 2021, 53, 847-864.	2.7	13
156	Cycloaddition of Dipolar Trimethylenemethane to C70Promoted by a Trace Amount of Water. Chemistry Letters, 1996, 25, 395-396.	1.3	12
157	Synthesis of Dimethyleneketene Acetals and Their [2+2] Cycloaddition to Olefins and [60]Fullerene as Cyclopropanecarboxylate Synthons. Synthesis, 1996, 1996, 1380-1388.	2.3	12
158	Lewisâ€Acidâ€Mediated Stereospecific Radical Polymerization of Acrylimides Bearing Chiral Oxazolidinones. Chemistry - A European Journal, 2015, 21, 18547-18550.	3.3	12
159	Synthesis and Properties of a Cyclohexaâ€2,7â€anthrylene Ethynylene Derivative. Angewandte Chemie - International Edition, 2021, 60, 998-1003.	13.8	11
160	Unusually Stable Organomercury Hydrides and Radicals. Angewandte Chemie International Edition in English, 1997, 36, 374-376.	4.4	10
161	An Innovative Approach to Implementation of Organotellurium-Mediated Radical Polymerization (TERP) in Emulsion Polymerization. Macromolecules, 2015, 48, 4312-4318.	4.8	10
162	Synthesis of Multivalent Organotellurium Chainâ€Transfer Agents by Postâ€modification and Their Applications in Living Radical Polymerization. Chemistry - A European Journal, 2016, 22, 17006-17010.	3.3	10

#	Article	IF	CITATIONS
163	Strainâ€Induced Double Carbon–Carbon Bond Activations of Cycloparaphenylenes by a Platinum Complex: Application to the Synthesis of Cyclic Diketones. Angewandte Chemie, 2018, 130, 11588-11591.	2.0	10
164	Syntheses of Tetrasubstituted [10]Cycloparaphenylenes by a Pdâ€catalyzed Coupling Reaction. Remarkable Effect of Strain on the Oxidative Addition and Reductive Elimination. Chemistry - an Asian Journal, 2020, 15, 2451-2455.	3.3	10
165	Intramolecular [3 + 2]Cycloaddition Reaction of Dipolar Trimethylenemethane. Chemistry Letters, 2000, 29, 664-665.	1.3	9
166	Kinetics of Living Anionic Polymerization of Polystyrenyl Lithium in Cyclohexane. Polymer Journal, 2008, 40, 749-762.	2.7	9
167	Dynamic Au–C σ-Bonds Leading to an Efficient Synthesis of [<i>n</i>]Cycloparaphenylenes (<i>n</i> =) Tj ETO	QqJJ 0.78	84314 rgBT /(
168	Radical Ions of Cyclopyrenylene: Comparison of Spectral Properties with Cycloparaphenylene. Journal of Physical Chemistry A, 2015, 119, 4136-4141.	2.5	8
169	Highly Ordered Nanocellular Polymeric Foams Generated by UV-Induced Chemical Foaming. ACS Macro Letters, 2020, 9, 1433-1438.	4.8	8
170	Tacticity, molecular weight, and temporal control by lanthanide triflate-catalyzed stereoselective radical polymerization of acrylamides with an organotellurium chain transfer agent. Polymer Chemistry, 2020, 11, 7042-7049.	3.9	7
171	Ultrafast Exciton Selfâ€Trapping and Delocalization in Cycloparaphenylenes: The Role of Excitedâ€State Symmetry in Electronâ€Vibrational Coupling. Angewandte Chemie - International Edition, 2020, 59, 16989-16996.	13.8	7
172	Convergent Synthesis of Silylated Allylic Alcohols by a Stereoselective Domino, Sequential Radical-Coupling Reaction This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan. We thank Dr. K. Itami for the X-ray analysis Angewandte Chemie, 2002, 114, 1465.	2.0	6
173	Synthesis of 2,3-Dialkylindoles from 2-Alkenylphenylisocyanides and Imines by Silyltelluride- and Tin Hydride-Mediated Sequential Radical Reactions. Synlett, 2005, 2005, 1893-1896.	1.8	6
174	One‣tep Synthesis of Dendritic Highly Branched Polystyrenes by Organotelluriumâ€Mediated Copolymerization of Styrene and a Dienyl Telluride Monomer. Angewandte Chemie, 2019, 131, 3992-3996.	2.0	6
175	Fabrication of Structurally Controlled Poly(n-butyl acrylate) Particles by Ab Initio Emulsion Organotellurium-Mediated Radical Polymerization. Synthesis of High Molecular Weight Homo and Block Copolymers. Macromolecules, 0, , .	4.8	6
176	Title is missing!. Angewandte Chemie, 2003, 115, 121-124.	2.0	5
177	Substituent effect on the antimony atom in organostibineâ€mediated living radical polymerization. Heteroatom Chemistry, 2011, 22, 307-315.	0.7	5
178	Living Ab Initio Emulsion Polymerization of Methyl Methacrylate in Water Using a Waterâ€Soluble Organotellurium Chain Transfer Agent under Thermal and Photochemical Conditions. Angewandte Chemie, 2018, 130, 974-978.	2.0	5
179	Significant structural relaxations of excited [<i>n</i>]cycloparaphenylene dications (<i>n</i> = 5–9). Physical Chemistry Chemical Physics, 2018, 20, 29207-29211.	2.8	5
180	New Organic Chemistry of Three-Dimensional ^ ^pi;-Conjugated Compounds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 992-1005.	0.1	5

#	Article	IF	CITATIONS
181	New Radical Coupling Reactions with Organotellurium Compounds Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2002, 60, 330-341.	0.1	4
182	Living Radical Polymerization 3. Synthesis of Block Copolymers and End-functionalized Polymers by Chain-end Modification. Nippon Gomu Kyokaishi, 2009, 82, 522-526.	0.0	4
183	Ultrafast Exciton Selfâ€Trapping and Delocalization in Cycloparaphenylenes: The Role of Excitedâ€State Symmetry in Electronâ€Vibrational Coupling. Angewandte Chemie, 2020, 132, 17137-17144.	2.0	4
184	Stereocontrolled radical polymerization of acrylamides by ligand-accelerated catalysis. Polymer Journal, 2021, 53, 515-521.	2.7	4
185	Experimental and theoretical studies on formal σ-bond metathesis of silyl tellurides with alkyl halides. Journal of Organometallic Chemistry, 2007, 692, 664-670.	1.8	3
186	Synthesis of ω-End Functionalized Polymers through Tellurium-Metal Transmetallation Reaction. ACS Symposium Series, 2012, , 99-114.	0.5	3
187	Control of the Cell Structure of UV-Induced Chemically Blown Nanocellular Foams by Self-Assembled Block Copolymer Morphology. Macromolecules, 2022, 55, 5176-5187.	4.8	3
188	cis- and trans-Dimethyl Spiro[(4',4'-dimethyl-2',6'-dioxacyclohexane)-1',3-(4-methylenebicyclo[3.3.0]octane)]-2,2-dicarboxylate. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 1137-1139.	0.4	2
189	Ein einfacher Weg zu Cyclopentenen durch eine [3 + 2] ycloadditionsreaktion zwischen einem dipolaren Trimethylenmethan und Alkinen. Angewandte Chemie, 1995, 107, 2338-2340.	2.0	2
190	Organotellurium-Mediated Living Radical Polymerization. ACS Symposium Series, 2003, , 631-642.	0.5	2
191	Shortest Double-Walled Carbon Nanotubes Composed of Cycloparaphenylenes. ChemPlusChem, 2017, 82, 942-942.	2.8	2
192	Synthesis of Photocleavable Block Copolymers for UV Induced Foaming. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 647-650.	0.3	2
193	Organogelators of 5,17-Difunctionalized Calix[4]arenes. Chemistry Letters, 2019, 48, 43-46.	1.3	2
194	Synthesis and Properties of a Cyclohexaâ€⊋,7â€anthrylene Ethynylene Derivative. Angewandte Chemie, 2021, 133, 1011-1016.	2.0	2
195	Silyltelluride-Mediated Radical Coupling Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2003, 61, 760-768.	0.1	1
196	A New Method for Living Radical Polymerization Using Organotellurium Compounds. Kobunshi Ronbunshu, 2004, 61, 227-236.	0.2	1
197	Living Radical Polymerization. Kobunshi Ronbunshu, 2007, 64, 329-342.	0.2	1
198	Synthesis of a Structurally Controlled Polyacrylonitrile Gel for Energy-Storage Devices by an Organotellerium-Mediated Radical Copolymerization and Subsequent Cross-Linking Reaction. ACS Symposium Series, 2018, , 129-142.	0.5	1

#	Article	IF	CITATIONS
199	The Effect of Viscosity on the Coupling and Hydrogen-Abstraction Reaction between Transient and Persistent Radicals?. Bulletin of the Chemical Society of Japan, 2021, 94, 966-972.	3.2	1
200	Evidence for Polarity- and Viscosity-Controlled Pathways in the Termination Reaction in the Radical Polymerization of Acrylonitrile. Macromolecules, 2021, 54, 4497-4506.	4.8	1
201	Crystallization of isotactic poly(N,N-diethyl acrylamide) synthesized by ytterbium triflate/H2O-catalyzed stereoselective radical polymerization. Polymer Journal, 2021, 53, 533-538.	2.7	1
202	A Diversity-Oriented Synthesis of α-Amino Acid Derivatives by a Silyltelluride-Mediated Radical Coupling Reaction of Imines and Isonitriles ChemInform, 2003, 34, no.	0.0	0
203	Novel Group-Transfer Radical Reactions with Organotelluriums. ChemInform, 2004, 35, no.	0.0	0
204	Acyclic Telluroiminium Salts: Isolation and Characterization ChemInform, 2005, 36, no.	0.0	0
205	Preparation of Macroporous Poly(divinylbenzene) Gels via Living Radical Polymerization. Materials Research Society Symposia Proceedings, 2008, 1134, 1.	0.1	0
206	Preparation of Biocompatible Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) <i>via</i> Organotellulium-Medicated Radical Polymerization (TERP). Kobunshi Ronbunshu, 2015, 72, 335-340.	0.2	0
207	Living Radical Polymerization under Photoimadiation. Journal of the Adhesion Society of Japan, 2017, 53, 157-163.	0.0	0
208	Synthesis of Poly(N â€vinylamide)s and Poly(vinylamine)s and Their Block Copolymers by Organotelluriumâ€Mediated Radical Polymerization. Angewandte Chemie, 2019, 131, 7187-7190.	2.0	0
209	Role of Lewis Acids in preventing the degradation of dithioester-dormant species in the RAFT polymerization of acrylamides in methanol to enable the successful dual control of molecular weight and tacticity. Polymer Chemistry, 2021, 12, 5336-5341.	3.9	0
210	Photochemical Generation of Glycosyl Radicals and Its Applications in Carbohydrate Synthesis. , 2003,		0

13

, .