Alessio Sanfilippo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4364790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A 400ÂMa-long Nd-Hf isotopic evolution of melt-modified garnet-pyroxenites in an ancient subcontinental lithosphere (Lanzo North ophiolite, Western Alps). Chemical Geology, 2022, 588, 120643.	3.3	3
2	Peculiarities of the Tectonomagmatic Processes in the Interaction Area between the Icelandic Plume and the Bight Transform Fault (North Atlantic). Doklady Earth Sciences, 2022, 504, 233-239.	0.7	3
3	Fractionation of highly siderophile and chalcogen elements in the lower oceanic crust: Insights from the troctolites of the Alpine-Apennine Jurassic ophiolites. Lithos, 2021, 380-381, 105873.	1.4	0
4	The Heterogeneous Tethyan Oceanic Lithosphere of the Alpine Ophiolites. Elements, 2021, 17, 23-28.	0.5	13
5	Geological and Geophysical Studies of the Charlie Gibbs Fracture Zone (North Atlantic). Doklady Earth Sciences, 2021, 497, 191-194.	0.7	5
6	Grain Size Variations Record Segregation of Residual Melts in Slow‧preading Oceanic Crust (Atlantis) Tj ETQq e2020JB020997.	0 0 0 rgBT 3.4	/Overlock 10 15
7	Ancient refractory asthenosphere revealed by mantle re-melting at the Arctic Mid Atlantic Ridge. Earth and Planetary Science Letters, 2021, 566, 116981.	4.4	18
8	Hidden but Ubiquitous: The Pre-Rift Continental Mantle in the Red Sea Region. Frontiers in Earth Science, 2021, 9, .	1.8	3
9	Role of compaction in melt extraction and accumulation at a slow spreading center: Microstructures of olivine gabbros from the Atlantis Bank (IODP Hole U1473A, SWIR). Tectonophysics, 2021, 815, 229001.	2.2	14
10	Highâ€Temperature Strain Localization and the Nucleation of Oceanic Core Complexes (16.5°N,) Tj ETQq0 0 0	rgBT/Ove	rloçk 10 Tf 5
11	Magmaâ€Mush Interactions in the Lower Oceanic Crust: Insights From Atlantis Bank Layered Series (Southwest Indian Ridge). Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022331.	3.4	11
12	Melting and Evolution of Amphiboleâ€Rich Backâ€Arc Abyssal Peridotites at the Mado Megamullion, Shikoku Basin. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC010013.	2.5	6
13	Geochemical characteristics of back-arc basin lower crust and upper mantle at final spreading stage of Shikoku Basin: an example of Mado Megamullion. Progress in Earth and Planetary Science, 2021, 8, .	3.0	16
14	Ultra-depleted melt refertilization of mantle peridotites in a large intra-transform domain (Doldrums) Tj ETQq0 0	0 rgBT /O I∺4	verlock 10 Tf
15	Multidisciplinary Investigation of the Transform Fault Zones Doldrums and Vema during Cruise 45 of the R/V "Akademik Nikolaj Strakhov― Oceanology, 2020, 60, 424-426.	1.2	3
16	Crustal Accretion in a Slow Spreading Backâ€Arc Basin: Insights From the Mado Megamullion Oceanic Core Complex in the Shikoku Basin. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009199.	2.5	15

17	Early-Stage Melt-Rock Reaction in a Cooling Crystal Mush Beneath a Slow-Spreading Mid-Ocean Ridge (IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge). Frontiers in Earth Science, 2020, 8, .	1.8	19
18	New Data on the Structure of the Megatransform System of the Doldrums (Central Atlantic). Doklady Earth Sciences, 2020, 491, 131-134.	0.7	3

ALESSIO SANFILIPPO

#	Article	IF	CITATIONS
19	Origin of oceanic ferrodiorites by injection of nelsonitic melts in gabbros at the Vema Lithospheric Section, Mid Atlantic Ridge. Lithos, 2020, 368-369, 105589.	1.4	11
20	Dynamic Accretion Beneath a Slow‣preading Ridge Segment: IODP Hole 1473A and the Atlantis Bank Oceanic Core Complex. Journal of Geophysical Research: Solid Earth, 2019, 124, 12631-12659.	3.4	53
21	Role of ancient, ultra-depleted mantle in Mid-Ocean-Ridge magmatism. Earth and Planetary Science Letters, 2019, 511, 89-98.	4.4	44
22	Emplacement and Highâ€Temperature Evolution of Gabbros of the 16.5°N Oceanic Core Complexes (Midâ€Atlantic Ridge): Insights Into the Compositional Variability of the Lower Oceanic Crust. Geochemistry, Geophysics, Geosystems, 2019, 20, 46-66.	2.5	19
23	Role of melting process and melt–rock reaction in the formation of Jurassic MORB-type basalts (Alpine ophiolites). Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	16
24	Occurrence of Felsic Rocks in Oceanic Gabbros from IODP Hole U1473A: Implications for Evolved Melt Migration in the Lower Oceanic Crust. Minerals (Basel, Switzerland), 2018, 8, 583.	2.0	39
25	Cretaceous evolution of the Andean margin between 36°S and 40°S latitude through a multiâ€proxy provenance analysis of Neuquén Basin strata (Argentina). Basin Research, 2017, 29, 284-304.	2.7	27
26	Zircon U–Pb geochronology of lower crust and quartzo-feldspathic clastic sediments from the Balagne ophiolite (Corsica). Swiss Journal of Geosciences, 2017, 110, 479-501.	1.2	6
27	Water, lithium and trace element compositions of olivine from Lanzo South replacive mantle dunites (Western Alps): New constraints into melt migration processes at cold thermal regimes. Geochimica Et Cosmochimica Acta, 2017, 214, 51-72.	3.9	21
28	Compositional variations in spinel-hosted pargasite inclusions in the olivine-rich rock from the oceanic crust–mantle boundary zone. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	20
29	New insights on the origin of troctolites from the breakaway area of the Godzilla Megamullion (Parece Vela backâ€arc basin): The role of meltâ€mantle interaction on the composition of the lower crust. Island Arc, 2016, 25, 220-234.	1.1	22
30	Rhenium-osmium isotope fractionation at the oceanic crust-mantle boundary. Geology, 2016, 44, 167-170.	4.4	15
31	Hybrid troctolites from mid-ocean ridges: inherited mantle in the lower crust. Lithos, 2015, 232, 124-130.	1.4	35
32	Reactive flow as dominant evolution process in the lowermost oceanic crust: evidence from olivine of the Pineto ophiolite (Corsica). Contributions To Mineralogy and Petrology, 2015, 170, 1.	3.1	35
33	Mantle–crust interactions in the oceanic lithosphere: Constraints from minor and trace elements in olivine. Geochimica Et Cosmochimica Acta, 2014, 141, 423-439.	3.9	62
34	Development and evolution of detachment faulting along 50 km of the Midâ€Atlantic Ridge near 16.5°N. Geochemistry, Geophysics, Geosystems, 2014, 15, 4692-4711.	2.5	32
35	The Ligurian Ophiolites: a journey through the building and evolution of slow spreading oceanic lithospher. Geological Field Trips, 2014, 6, 1-46.	0.5	1
36	Melt-Rock Reaction in the Mantle: Mantle Troctolites from the Parece Vela Ancient Back-Arc Spreading Center. Journal of Petrology, 2013, 54, 861-885.	2.8	60

#	Article	IF	CITATIONS
37	Building of the deepest crust at a fossil slow-spreading centre (Pineto gabbroic sequence, Alpine) Tj ETQq1 1 0.78	34314 rgB	T ¦Qverlock
38	Detrital zircon provenance from the Neuquén Basin (south-central Andes): Cretaceous geodynamic evolution and sedimentary response in a retroarc-foreland basin. Geology, 2012, 40, 559-562.	4.4	69
39	Melt transport and deformation history in a nonvolcanic ophiolitic section, northern Apennines, Italy: Implications for crustal accretion at slow spreading settings. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	44
40	Expedition 360 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	20
41	Expedition 360 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	16
42	Site U1473. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	20
43	Hole 1105A redescription. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	5
44	Hole U1473A remediation operations, Expedition 362T. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	6
45	Crustal contamination and hybridization of an embryonic oceanic crust during the Red Sea rifting (Tihama Asir igneous complex, Saudi Arabia). Journal of Petrology, 0, , .	2.8	5