
Alessio Sanfilippo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4364790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detrital zircon provenance from the Neuquén Basin (south-central Andes): Cretaceous geodynamic evolution and sedimentary response in a retroarc-foreland basin. Geology, 2012, 40, 559-562.	4.4	69
2	Mantle–crust interactions in the oceanic lithosphere: Constraints from minor and trace elements in olivine. Geochimica Et Cosmochimica Acta, 2014, 141, 423-439.	3.9	62
3	Melt-Rock Reaction in the Mantle: Mantle Troctolites from the Parece Vela Ancient Back-Arc Spreading Center. Journal of Petrology, 2013, 54, 861-885.	2.8	60
4	Dynamic Accretion Beneath a Slowâ€6preading Ridge Segment: IODP Hole 1473A and the Atlantis Bank Oceanic Core Complex. Journal of Geophysical Research: Solid Earth, 2019, 124, 12631-12659.	3.4	53
5	Melt transport and deformation history in a nonvolcanic ophiolitic section, northern Apennines, Italy: Implications for crustal accretion at slow spreading settings. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	44
6	Role of ancient, ultra-depleted mantle in Mid-Ocean-Ridge magmatism. Earth and Planetary Science Letters, 2019, 511, 89-98.	4.4	44
7	Building of the deepest crust at a fossil slow-spreading centre (Pineto gabbroic sequence, Alpine) Tj ETQq1 1 0.7	84314 rgB 3.1	T /Overlock
8	Occurrence of Felsic Rocks in Oceanic Gabbros from IODP Hole U1473A: Implications for Evolved Melt Migration in the Lower Oceanic Crust. Minerals (Basel, Switzerland), 2018, 8, 583.	2.0	39
9	Hybrid troctolites from mid-ocean ridges: inherited mantle in the lower crust. Lithos, 2015, 232, 124-130.	1.4	35
10	Reactive flow as dominant evolution process in the lowermost oceanic crust: evidence from olivine of the Pineto ophiolite (Corsica). Contributions To Mineralogy and Petrology, 2015, 170, 1.	3.1	35
11	Development and evolution of detachment faulting along 50 km of the Midâ€Atlantic Ridge near 16.5°N. Geochemistry, Geophysics, Geosystems, 2014, 15, 4692-4711.	2.5	32
12	Cretaceous evolution of the Andean margin between 36°S and 40°S latitude through a multiâ€proxy provenance analysis of Neuquén Basin strata (Argentina). Basin Research, 2017, 29, 284-304.	2.7	27
13	New insights on the origin of troctolites from the breakaway area of the Godzilla Megamullion (Parece Vela backâ€arc basin): The role of meltâ€mantle interaction on the composition of the lower crust. Island Arc, 2016, 25, 220-234.	1.1	22
14	Water, lithium and trace element compositions of olivine from Lanzo South replacive mantle dunites (Western Alps): New constraints into melt migration processes at cold thermal regimes. Geochimica Et Cosmochimica Acta, 2017, 214, 51-72.	3.9	21
15	Compositional variations in spinel-hosted pargasite inclusions in the olivine-rich rock from the oceanic crust–mantle boundary zone. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	20
16	Expedition 360 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	20
17	Site U1473. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	20
18	Emplacement and Highâ€Temperature Evolution of Gabbros of the 16.5°N Oceanic Core Complexes (Midâ€Atlantic Ridge): Insights Into the Compositional Variability of the Lower Oceanic Crust. Geochemistry, Geophysics, Geosystems, 2019, 20, 46-66.	2.5	19

ALESSIO SANFILIPPO

#	Article	IF	CITATIONS
19	Early-Stage Melt-Rock Reaction in a Cooling Crystal Mush Beneath a Slow-Spreading Mid-Ocean Ridge (IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge). Frontiers in Earth Science, 2020, 8, .	1.8	19
20	Ancient refractory asthenosphere revealed by mantle re-melting at the Arctic Mid Atlantic Ridge. Earth and Planetary Science Letters, 2021, 566, 116981.	4.4	18
21	Role of melting process and melt–rock reaction in the formation of Jurassic MORB-type basalts (Alpine ophiolites). Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	16
22	Expedition 360 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	16
23	Geochemical characteristics of back-arc basin lower crust and upper mantle at final spreading stage of Shikoku Basin: an example of Mado Megamullion. Progress in Earth and Planetary Science, 2021, 8, .	3.0	16
24	Rhenium-osmium isotope fractionation at the oceanic crust-mantle boundary. Geology, 2016, 44, 167-170.	4.4	15
25	Crustal Accretion in a Slow Spreading Backâ€Arc Basin: Insights From the Mado Megamullion Oceanic Core Complex in the Shikoku Basin. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009199.	2.5	15
26	Grain Size Variations Record Segregation of Residual Melts in Slow‧preading Oceanic Crust (Atlantis) Tj ETQc e2020JB020997.	0 0 0 rgB ⁻ 3.4	[/Overlock 10 15
27	Role of compaction in melt extraction and accumulation at a slow spreading center: Microstructures of olivine gabbros from the Atlantis Bank (IODP Hole U1473A, SWIR). Tectonophysics, 2021, 815, 229001.	2.2	14
28	The Heterogeneous Tethyan Oceanic Lithosphere of the Alpine Ophiolites. Elements, 2021, 17, 23-28.	0.5	13
29	Origin of oceanic ferrodiorites by injection of nelsonitic melts in gabbros at the Vema Lithospheric Section, Mid Atlantic Ridge. Lithos, 2020, 368-369, 105589.	1.4	11
30	Magmaâ€Mush Interactions in the Lower Oceanic Crust: Insights From Atlantis Bank Layered Series (Southwest Indian Ridge). Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022331.	3.4	11
31	Zircon U–Pb geochronology of lower crust and quartzo-feldspathic clastic sediments from the Balagne ophiolite (Corsica). Swiss Journal of Geosciences, 2017, 110, 479-501.	1.2	6
32	Highâ€īemperature Strain Localization and the Nucleation of Oceanic Core Complexes (16.5°N,) Tj ETQq0 0 0	rgBT_/Ove	erlogk 10 Tf 50
33	Hole U1473A remediation operations, Expedition 362T. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	6
34	Melting and Evolution of Amphiboleâ€Rich Backâ€Arc Abyssal Peridotites at the Mado Megamullion, Shikoku Basin. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC010013.	2.5	6
35	Geological and Geophysical Studies of the Charlie Gibbs Fracture Zone (North Atlantic). Doklady Earth Sciences, 2021, 497, 191-194.	0.7	5
36	Hole 1105A redescription. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	5

#	Article	IF	CITATIONS
37	Crustal contamination and hybridization of an embryonic oceanic crust during the Red Sea rifting (Tihama Asir igneous complex, Saudi Arabia). Journal of Petrology, 0, , .	2.8	5

38 Ultra-depleted melt refertilization of mantle peridotites in a large intra-transform domain (Doldrums) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

39	Multidisciplinary Investigation of the Transform Fault Zones Doldrums and Vema during Cruise 45 of the R/V "Akademik Nikolaj Strakhov― Oceanology, 2020, 60, 424-426.	1.2	3
40	New Data on the Structure of the Megatransform System of the Doldrums (Central Atlantic). Doklady Earth Sciences, 2020, 491, 131-134.	0.7	3
41	Hidden but Ubiquitous: The Pre-Rift Continental Mantle in the Red Sea Region. Frontiers in Earth Science, 2021, 9, .	1.8	3
42	A 400ÂMa-long Nd-Hf isotopic evolution of melt-modified garnet-pyroxenites in an ancient subcontinental lithosphere (Lanzo North ophiolite, Western Alps). Chemical Geology, 2022, 588, 120643.	3.3	3
43	Peculiarities of the Tectonomagmatic Processes in the Interaction Area between the Icelandic Plume and the Bight Transform Fault (North Atlantic). Doklady Earth Sciences, 2022, 504, 233-239.	0.7	3
44	The Ligurian Ophiolites: a journey through the building and evolution of slow spreading oceanic lithospher. Geological Field Trips, 2014, 6, 1-46.	0.5	1
45	Fractionation of highly siderophile and chalcogen elements in the lower oceanic crust: Insights from the troctolites of the Alpine-Apennine Jurassic ophiolites. Lithos, 2021, 380-381, 105873.	1.4	0