Yan Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4363935/publications.pdf

Version: 2024-02-01

188	18,110	63	131
papers	citations	h-index	g-index
191	191	191	19943
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Colloidal metal sulfide nanoparticles for high performance electrochemical energy storage systems. Current Opinion in Green and Sustainable Chemistry, 2022, 34, 100596.	5.9	3
2	Spherical Polyelectrolyte Brushes Templated Hollow C@MnO Nanospheres as Sulfur Host Materials for Liâ^'S Batteries. ChemNanoMat, 2022, 8, .	2.8	2
3	Template synthesis of dual-functional porous MoS ₂ nanoparticles with photothermal conversion and catalytic properties. Nanoscale, 2022, 14, 6888-6901.	5.6	13
4	Promoting Mechanistic Understanding of Lithium Deposition and Solidâ€Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives. Advanced Energy Materials, 2022, 12, .	19.5	47
5	Largeâ€Scale Synthesis of Nanostructured Carbonâ€Ti ₄ O ₇ Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithiumâ€Sulfur Pouch Cells. Batteries and Supercaps, 2022, 5, .	4.7	8
6	Surface-Functionalized Au–Pd Nanorods with Enhanced Photothermal Conversion and Catalytic Performance. ACS Applied Materials & Derformance. Derformance Derformance. ACS Applied Materials & Derformance. Derformance Derformance Derformance. Derformance Derformance. Derformance	8.0	11
7	Constructing Binder―and Carbon Additiveâ€Free Organosulfur Cathodes Based on Conducting Thiolâ€Polymers through Electropolymerization for Lithiumâ€Sulfur Batteries. ChemSusChem, 2022, 15, .	6.8	12
8	Self-Assembly of Plasmonic Nanoantenna–Waveguide Structures for Subdiffractional Chiral Sensing. ACS Nano, 2021, 15, 351-361.	14.6	20
9	Unveiling the Formation of Solid Electrolyte Interphase and its Temperature Dependence in "Water-in-Salt―Supercapacitors. ACS Applied Materials & 1, 13, 3979-3990.	8.0	19
10	Template-synthesis of a poly(ionic liquid)-derived Fe _{1â^'x} S/nitrogen-doped porous carbon membrane and its electrode application in lithiumâ€"sulfur batteries. Materials Advances, 2021, 2, 5203-5212.	5.4	8
11	Efficient Sulfur Host Based on Yolkâ€Shell Iron Oxide/Sulfideâ€Carbon Nanospindles for Lithiumâ€Sulfur Batteries. ChemSusChem, 2021, 14, 1404-1413.	6.8	27
12	Engineering Textile Electrode and Bacterial Cellulose Nanofiber Reinforced Hydrogel Electrolyte to Enable Highâ€Performance Flexible Allâ€Solidâ€State Supercapacitors. Advanced Energy Materials, 2021, 11, 2003010.	19.5	128
13	Single-Ni Sites Embedded in Multilayer Nitrogen-Doped Graphene Derived from Amino-Functionalized MOF for Highly Selective CO ₂ Electroreduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 3792-3801.	6.7	24
14	Kinetics of the Reduction of 4-Nitrophenol by Silver Nanoparticles Immobilized in Thermoresponsive Core–Shell Nanoreactors. Industrial & Engineering Chemistry Research, 2021, 60, 3922-3935.	3.7	17
15	High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries. Rare Metals, 2021, 40, 3175.	7.1	72
16	Unravelling the Mechanism of Lithium Nucleation and Growth and the Interaction with the Solid Electrolyte Interface. ACS Energy Letters, 2021, 6, 1719-1728.	17.4	61
17	Progress and Perspective on Rechargeable Magnesium–Sulfur Batteries. Small Methods, 2021, 5, e2001303.	8.6	19
18	A Comprehensive Landscape for Fibril Association Behaviors Encoded Synergistically by Saccharides and Peptides. Journal of the American Chemical Society, 2021, 143, 6622-6633.	13.7	19

#	Article	IF	CITATIONS
19	Protonated Imineâ€Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19797-19803.	13.8	171
20	Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook., 2021, 3, 957-975.		64
21	Kinetic Study on the Adsorption of 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane on Ag Nanoparticles in Chloroform: Implications for the Charge Transfer Complex of Ag–F ₄ TCNQ. ACS Applied Nano Materials, 2021, 4, 11625-11635.	5.0	2
22	Combined first-principles statistical mechanics approach to sulfur structure in organic cathode hosts for polymer based lithium–sulfur (Li–S) batteries. Physical Chemistry Chemical Physics, 2021, 23, 26709-26720.	2.8	8
23	Thermodynamic Analysis of the Uptake of a Protein in a Spherical Polyelectrolyte Brush. Macromolecular Rapid Communications, 2020, 41, 1900421.	3.9	12
24	Coreâ€Shell Nanoparticles with a Redox Polymer Core and a Silica Porous Shell as Highâ€Performance Cathode Material for Lithiumâ€lon Batteries. Energy Technology, 2020, 8, 1901040.	3.8	6
25	Mechanism of the Oxidation of 3,3′,5,5′â€₹etramethylbenzidine Catalyzed by Peroxidaseâ€Like Pt Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes: A Kinetic Study. ChemPhysChem, 2020, 21, 450-458.	2.1	25
26	Morphological Reversibility of Modified Li-Based Anodes for Next-Generation Batteries. ACS Energy Letters, 2020, 5, 152-161.	17.4	53
27	Polymer-Derived Heteroatom-Doped Porous Carbon Materials. Chemical Reviews, 2020, 120, 9363-9419.	47.7	492
28	Isolated Ni single atoms in nitrogen doped ultrathin porous carbon templated from porous g-C3N4 for high-performance CO2 reduction. Nano Energy, 2020, 77, 105158.	16.0	83
29	Polydopamine-based nanoreactors: synthesis and applications in bioscience and energy materials. Chemical Science, 2020, 11, 12269-12281.	7.4	44
30	Hollow MoS ₃ Nanospheres as Electrode Material for "Waterâ€inâ€Salt‷Li–Ion Batteries. Batteries and Supercaps, 2020, 3, 747-756.	4.7	15
31	Cryo-Electron microscopy for the study of self-assembled poly(ionic liquid) nanoparticles and protein supramolecular structures. Colloid and Polymer Science, 2020, 298, 707-717.	2.1	13
32	Fabrication of Pascalâ€triangle Lattice of Proteins by Inducing Ligand Strategy. Angewandte Chemie - International Edition, 2020, 59, 9617-9623.	13.8	14
33	Potassiumâ€sulfur batteries: Status and perspectives. EcoMat, 2020, 2, e12038.	11.9	41
34	Approaching Highâ€Performance Supercapacitors via Enhancing Pseudocapacitive Nickel Oxideâ€Based Materials. Advanced Sustainable Systems, 2020, 4, 1900137.	5.3	49
35	Synthesis and characterization of hydrogels containing redoxâ€responsive 2,2,6,6 ― tetramethylpiperidinyloxy methacrylate and thermoresponsive N â€isopropylacrylamide. Journal of Polymer Science, 2020, 58, 1553-1563.	3.8	3
36	Interaction of Proteins with Polyelectrolytes: Comparison of Theory to Experiment. Langmuir, 2019, 35, 5373-5391.	3 . 5	51

#	Article	IF	CITATIONS
37	Synthesis and characterisation of redox hydrogels based on stable nitroxide radicals. Soft Matter, 2019, 15, 6418-6426.	2.7	18
38	Core-shell nanostructured organic redox polymer cathodes with superior performance. Nano Energy, 2019, 64, 103949.	16.0	26
39	Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides. ACS Nano, 2019, 13, 13474-13485.	14.6	32
40	Enhanced Catalytic Activity of $Gold@Polydopamine$ Nanoreactors with Multi-compartment Structure Under NIR Irradiation. Nano-Micro Letters, 2019, 11, 83.	27.0	17
41	lonic organic cage-encapsulating phase-transferable metal clusters. Chemical Science, 2019, 10, 1450-1456.	7.4	42
42	Highly Dispersible Hexagonal Carbon–MoS ₂ –Carbon Nanoplates with Hollow Sandwich Structures for Supercapacitors. Chemistry - A European Journal, 2019, 25, 4757-4766.	3.3	35
43	Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode: Efficient, Scalable, and Recyclable. Nano-Micro Letters, 2019, 11, 41.	27.0	24
44	Silver nanowires with optimized silica coating as versatile plasmonic resonators. Scientific Reports, 2019, 9, 3859.	3.3	29
45	Poly(ethylene glycol) brush- <i>b</i> -poly(<i>N</i> -vinylpyrrolidone)-based double hydrophilic block copolymer particles crosslinked <i>via</i> crystalline l±-cyclodextrin domains. RSC Advances, 2019, 9, 4993-5001.	3.6	8
46	Formation of NiCo ₂ V ₂ O ₈ Yolk–Double Shell Spheres with Enhanced Lithium Storage Properties. Angewandte Chemie, 2018, 130, 2949-2953.	2.0	17
47	Nanostructured Conversion-type Anode Materials for Advanced Lithium-lon Batteries. CheM, 2018, 4, 972-996.	11.7	591
48	Formation of NiCo ₂ V ₂ O ₈ Yolkâ€"Double Shell Spheres with Enhanced Lithium Storage Properties. Angewandte Chemie - International Edition, 2018, 57, 2899-2903.	13.8	131
49	Correlating Morphological Evolution of Li Electrodes with Degrading Electrochemical Performance of Li/LiCoO ₂ and Li/S Battery Systems: Investigated by Synchrotron X-ray Phase Contrast Tomography. ACS Energy Letters, 2018, 3, 356-365.	17.4	64
50	Porous Iron–Cobalt Alloy/Nitrogenâ€Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal–Organic Framework Hybrids for Oxygen Reduction. Advanced Functional Materials, 2018, 28, 1706738.	14.9	227
51	Catalysis by Metallic Nanoparticles in Solution: Thermosensitive Microgels as Nanoreactors. Zeitschrift Fur Physikalische Chemie, 2018, 232, 773-803.	2.8	42
52	Construction of Complex Co ₃ V ₂ O ₈ Hollow Structures from Metal–Organic Frameworks with Enhanced Lithium Storage Properties. Advanced Materials, 2018, 30, 1702875.	21.0	262
53	Hierarchical Hollow Nanoprisms Based on Ultrathin Niâ€Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. Angewandte Chemie - International Edition, 2018, 57, 172-176.	13.8	507
54	Titelbild: Hierarchical Hollow Nanoprisms Based on Ultrathin Niâ€Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution (Angew. Chem. 1/2018). Angewandte Chemie, 2018, 130, 1-1.	2.0	67

#	Article	IF	CITATIONS
55	Hierarchical Hollow Nanoprisms Based on Ultrathin Niâ€Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. Angewandte Chemie, 2018, 130, 178-182.	2.0	72
56	Visualizing the morphological and compositional evolution of the interface of InLi-anode thio-LISION electrolyte in an all-solid-state Li–S cell by ⟨i⟩in operando⟨/i⟩ synchrotron X-ray tomography and energy dispersive diffraction. Journal of Materials Chemistry A, 2018, 6, 22489-22496.	10.3	47
57	SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles. Journal of Physical Chemistry Letters, 2018, 9, 6767-6772.	4.6	33
58	Self-assembly of Human Galectin-1 via dual supramolecular interactions and its inhibition of T-cell agglutination and apoptosis. Nano Research, 2018, 11, 5566-5572.	10.4	9
59	CO ₂ -switchable response of protein microtubules: behaviour and mechanism. Materials Chemistry Frontiers, 2018, 2, 1642-1646.	5.9	2
60	Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding. Journal of Chemical Physics, 2018, 149, 163324.	3.0	32
61	Formation of Ti–Fe mixed sulfide nanoboxes for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 21891-21895.	10.3	27
62	A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances. Science Advances, 2018, 4, eaat1687.	10.3	225
63	Cu ₂ O@PNIPAM core–shell microgels as novel inkjet materials for the preparation of CuO hollow porous nanocubes gas sensing layers. Journal of Materials Chemistry C, 2018, 6, 7249-7256.	5.5	10
64	Design and fabrication of functional hybrid materials for catalytic applications. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 16-22.	5.9	19
65	Protein Immobilization onto Cationic Spherical Polyelectrolyte Brushes Studied by Small Angle X-ray Scattering. Biomacromolecules, 2017, 18, 1574-1581.	5.4	37
66	Scalable gas sensors fabrication to integrate metal oxide nanoparticles with well-defined shape and size. Sensors and Actuators B: Chemical, 2017, 249, 639-646.	7.8	26
67	Botanic chemistry enabled synthesis of 3D hollow metal oxides/carbon hybrids for ultra-high performance metal-ion batteries. Materials Today Energy, 2017, 4, 89-96.	4.7	7
68	Porous Ti ₄ O ₇ Particles with Interconnectedâ€Pore Structure as a Highâ€Efficiency Polysulfide Mediator for Lithium–Sulfur Batteries. Advanced Functional Materials, 2017, 27, 1701176.	14.9	127
69	Highly Ordered Selfâ€Assembly of Native Proteins into 1D, 2D, and 3D Structures Modulated by the Tether Length of Assemblyâ€Inducing Ligands. Angewandte Chemie - International Edition, 2017, 56, 10691-10695.	13.8	59
70	General Synthetic Route toward Highly Dispersed Metal Clusters Enabled by Poly(ionic liquid)s. Journal of the American Chemical Society, 2017, 139, 8971-8976.	13.7	110
71	Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy and Environmental Science, 2017, 10, 1777-1783.	30.8	782
72	Formation of Ni–Fe Mixed Diselenide Nanocages as a Superior Oxygen Evolution Electrocatalyst. Advanced Materials, 2017, 29, 1703870.	21.0	428

#	Article	lF	CITATIONS
73	Formation of Hierarchical In ₂ S ₃ â€"CdIn ₂ S ₄ Heterostructured Nanotubes for Efficient and Stable Visible Light CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 17305-17308.	13.7	585
74	Binder-free carbon monolith cathode material for operando investigation of high performance lithium-sulfur batteries with X-ray radiography. Energy Storage Materials, 2017, 9, 96-104.	18.0	23
75	Three-dimensional protein assemblies directed by orthogonal non-covalent interactions. Chemical Communications, 2016, 52, 9687-9690.	4.1	6
76	<i>Inâ€situ</i> Synthesis of Stabilizerâ€Free Gold Nanocrystals with Controllable Shape on Substrates as Highly Active Catalysts for Multiple Use. Advanced Synthesis and Catalysis, 2016, 358, 1440-1448.	4.3	10
77	Thermosensitive Cu ₂ O–PNIPAM core–shell nanoreactors with tunable photocatalytic activity. Journal of Materials Chemistry A, 2016, 4, 9677-9684.	10.3	46
78	Spherical polyelectrolyte brushes as nanoreactors for the generation of metallic and oxidic nanoparticles: Synthesis and application in catalysis. Progress in Polymer Science, 2016, 59, 86-104.	24.7	65
79	3D Structures of Responsive Nanocompartmentalized Microgels. Nano Letters, 2016, 16, 7295-7301.	9.1	90
80	Internal Morphology-Controllable Self-Assembly in Poly(Ionic Liquid) Nanoparticles. ACS Nano, 2016, 10, 7731-7737.	14.6	64
81	Bioinspired Synthesis of Hierarchically Porous MoO ₂ /Mo ₂ C Nanocrystal Decorated N-Doped Carbon Foam for Lithium–Oxygen Batteries. Chemistry of Materials, 2016, 28, 5743-5752.	6.7	96
82	Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29628-29636.	8.0	37
83	Anchoring Nanostructured Manganese Fluoride on Few-Layer Graphene Nanosheets as Anode for Enhanced Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1819-1826.	8.0	31
84	Precise and Reversible Protein-Microtubule-Like Structure with Helicity Driven by Dual Supramolecular Interactions. Journal of the American Chemical Society, 2016, 138, 1932-1937.	13.7	85
85	Biomass-mediated synthesis of carbon-supported nanostructured metal sulfides for ultra-high performance lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 2738-2745.	10.3	24
86	Bio-inspired synthesis of N,F co-doped 3D graphitized carbon foams containing manganese fluoride nanocrystals for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 2691-2698.	10.3	42
87	High-performance lithium storage in an ultrafine manganese fluoride nanorod anode with enhanced electrochemical activation based on conversion reaction. Physical Chemistry Chemical Physics, 2016, 18, 3780-3787.	2.8	15
88	Nonequilibrium structure of colloidal dumbbells under oscillatory shear. Physical Review E, 2015, 92, 052311.	2.1	8
89	Investigation of reactions between trace gases and functional CuO nanospheres and octahedrons using NEXAFS-TXM imaging. Scientific Reports, 2015, 5, 17729.	3.3	29
90	Theory of Solvation-Controlled Reactions in Stimuli-Responsive Nanoreactors. Journal of Physical Chemistry C, 2015, 119, 15723-15730.	3.1	37

#	Article	IF	Citations
91	Cyclodextrin modified microgels as "nanoreactor―for the generation of Au nanoparticles with enhanced catalytic activity. Journal of Materials Chemistry A, 2015, 3, 6187-6195.	10.3	52
92	Colloidal Plastic Crystals in a Shear Field. Langmuir, 2015, 31, 5992-6000.	3. 5	18
93	Frontispiece: Air Electrode for the Lithium-Air Batteries: Materials and Structure Designs. ChemPlusChem, 2015, 80, .	2.8	0
94	Wave-like free-standing NiCo2O4 cathode for lithium–oxygen battery with high discharge capacity. Journal of Power Sources, 2015, 294, 593-601.	7.8	37
95	Controllable assembly of two types of metal nanoparticles onto block copolymer nanospheres with ordered spatial distribution. Journal of Materials Chemistry A, 2015, 3, 3382-3389.	10.3	16
96	Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes. Physical Chemistry Chemical Physics, 2015, 17, 28137-28143.	2.8	83
97	Ligand-free Gold Nanoparticles as a Reference Material for Kinetic Modelling of Catalytic Reduction of 4-Nitrophenol. Catalysis Letters, 2015, 145, 1105-1112.	2.6	75
98	In Situ Synthesis of Catalytic Active Au Nanoparticles onto Gibbsite–Polydopamine Core–Shell Nanoplates. Langmuir, 2015, 31, 9483-9491.	3.5	49
99	Facile synthesis of gold/polymer nanocomposite particles using polymeric amine-based particles as dual reductants and templates. Polymer, 2015, 76, 271-279.	3.8	24
100	Oneâ€Step Solvothermal Synthesis of Nanostructured Manganese Fluoride as an Anode for Rechargeable Lithiumâ€Ion Batteries and Insights into the Conversion Mechanism. Advanced Energy Materials, 2015, 5, 1401716.	19.5	97
101	Graphene nanosheets loaded with Pt nanoparticles with enhanced electrochemical performance for sodium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 2568-2571.	10.3	76
102	Air Electrode for the Lithium–Air Batteries: Materials and Structure Designs. ChemPlusChem, 2015, 80, 270-287.	2.8	73
103	Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite. Journal of Power Sources, 2014, 254, 353-359.	7.8	140
104	Mesoporous carbon/sulfur composite with polyaniline coating for lithium sulfur batteries. Solid State Ionics, 2014, 262, 170-173.	2.7	35
105	Stimuli-Responsive Spherical Brushes Based on <scp>D</scp> -Galactopyranose and 2-(Dimethylamino)ethyl Methacrylate. Macromolecular Bioscience, 2014, 14, 81-91.	4.1	20
106	Synthesis and performance of apple-like tin oxide as anode for Li-ion batteries. Solid State Ionics, 2014, 262, 61-65.	2.7	5
107	Hierarchical mesoporous iron-based fluoride with partially hollow structure: facile preparation and high performance as cathode material for rechargeable lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 8556.	2.8	42
108	Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 10350-10354.	10.3	114

#	Article	IF	Citations
109	Size-controlled synthesis of hierarchical nanoporous iron based fluorides and their high performances in rechargeable lithium ion batteries. Chemical Communications, 2014, 50, 6487.	4.1	32
110	Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 18618-18625.	3.1	316
111	Enhancement of long stability of Li–S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode. RSC Advances, 2014, 4, 21612-21618.	3.6	47
112	Glyco-Inside Micelles and Vesicles Directed by Protection–Deprotection Chemistry. ACS Macro Letters, 2014, 3, 534-539.	4.8	37
113	Thermosensitive hollow Janus dumbbells. Colloid and Polymer Science, 2014, 292, 1785-1793.	2.1	9
114	The structure of AuPd nanoalloys anchored on spherical polyelectrolyte brushes determined by X-ray absorption spectroscopy. Faraday Discussions, 2013, 162, 45.	3.2	12
115	Silica-coated Au/Ag nanorods with tunable surface plasmon bands for nanoplasmonics with single particles. Colloid and Polymer Science, 2013, 291, 585-594.	2.1	14
116	Thermosensitive Au-PNIPA yolk-shell particles as "nanoreactors―with tunable optical properties. Colloid and Polymer Science, 2013, 291, 231-237.	2.1	19
117	Nickel nanowire network coating to alleviate interfacial polarization for Na-beta battery applications. Journal of Power Sources, 2013, 240, 786-795.	7.8	27
118	Electronic Structure of Individual Hybrid Colloid Particles Studied by Near-Edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy in the X-ray Microscope. Nano Letters, 2013, 13, 824-828.	9.1	13
119	Worm-like mesoporous structured iron-based fluoride: Facile preparation and application as cathodes for rechargeable lithium ion batteries. Journal of Power Sources, 2013, 244, 306-311.	7.8	17
120	Functional binder for high-performance Li–O2 batteries. Journal of Power Sources, 2013, 244, 614-619.	7.8	14
121	Flexible self-supporting graphene–sulfur paper for lithium sulfur batteries. RSC Advances, 2013, 3, 2558.	3.6	115
122	Adsorption of proteins to functional polymeric nanoparticles. Polymer, 2013, 54, 2835-2849.	3.8	94
123	Synthesis of ordered mesoporous CuCo2O4 with different textures as anode material for lithium ion battery. Microporous and Mesoporous Materials, 2013, 169, 242-247.	4.4	80
124	Core-Shell Microgels as Nanoreactors. , 2013, , 113-130.		0
125	Au-TiO <i></i> i/> ₂ <i></i> Yolk-Shell Particles for Photocatalysis Application. Zeitschrift Fur Physikalische Chemie, 2012, 226, 827-835.	2.8	7
126	Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chemical Society Reviews, 2012, 41, 5577.	38.1	966

#	Article	IF	CITATIONS
127	Brewster-Angle Variable Polarization Spectroscopy of Colloidal Au-Nanospheres and -Nanorods at the Silicon Surface. Journal of Physical Chemistry C, 2012, 116, 8079-8088.	3.1	5
128	Recoverable Platinum Nanocatalysts Immobilized on Magnetic Spherical Polyelectrolyte Brushes. Industrial & Engineering Chemistry Research, 2012, 51, 5608-5614.	3.7	41
129	A tubular polypyrrole based air electrode with improved O2 diffusivity for Li–O2 batteries. Energy and Environmental Science, 2012, 5, 7893.	30.8	119
130	Mesoporous Co3O4 with different porosities as catalysts for the lithium–oxygen cell. Solid State lonics, 2012, 225, 598-603.	2.7	52
131	Catalytic activity of nanoalloys from gold and palladium. Physical Chemistry Chemical Physics, 2012, 14, 6487.	2.8	73
132	Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery. Journal of Solid State Electrochemistry, 2012, 16, 1863-1868.	2.5	67
133	Synthesis and Characterization of Monodisperse Thermosensitive Dumbbellâ€5haped Microgels. Macromolecular Rapid Communications, 2012, 33, 1042-1048.	3.9	17
134	Oxidation of an organic dye catalyzed by MnOx nanoparticles. Journal of Catalysis, 2012, 289, 80-87.	6.2	48
135	Spherical polymer brushes with vinylimidazolium-type poly(ionic liquid) chains as support for metallic nanoparticles. Polymer, 2012, 53, 43-49.	3.8	69
136	Thermosensitive Auâ€PNIPA Yolk–Shell Nanoparticles with Tunable Selectivity for Catalysis. Angewandte Chemie - International Edition, 2012, 51, 2229-2233.	13.8	350
137	Synthesis of Spherical Polyelectrolyte Brushes by Photoemulsion Polymerization with Different Photoinitiators. Industrial & Engineering Chemistry Research, 2011, 50, 3564-3569.	3.7	13
138	Synthesis of Magnetic Spherical Polyelectrolyte Brushes. Macromolecules, 2011, 44, 632-639.	4.8	60
139	Catalytic Activity of Faceted Gold Nanoparticles Studied by a Model Reaction: Evidence for Substrate-Induced Surface Restructuring. ACS Catalysis, 2011, 1, 908-916.	11.2	504
140	Glycopolymerâ€Grafted Polystyrene Nanospheres. Macromolecular Bioscience, 2011, 11, 199-210.	4.1	33
141	Diversified Applications of Chemically Modified 1,2â€Polybutadiene. Macromolecular Rapid Communications, 2011, 32, 1157-1162.	3.9	17
142	Thermosensitive core–shell microgels: From colloidal model systems to nanoreactors. Progress in Polymer Science, 2011, 36, 767-792.	24.7	275
143	Synthesis of Spherical Polyelectrolyte Brushes by Thermoâ€controlled Emulsion Polymerization. Macromolecular Rapid Communications, 2010, 31, 1272-1275.	3.9	19
144	Recyclable Spherical Polyelectrolyte Brushes Containing Magnetic Nanoparticles in Core. Macromolecular Rapid Communications, 2010, 31, 1440-1443.	3.9	22

#	Article	IF	Citations
145	Microgels as Nanoreactors: Applications in Catalysis. Advances in Polymer Science, 2010, , 129-163.	0.8	58
146	Stimuli-Responsive Organosilica Hybrid Nanowires Decorated with Metal Nanoparticles. Chemistry of Materials, 2010, 22, 2626-2634.	6.7	63
147	Composites of Metal Nanoparticles and TiO ₂ Immobilized in Spherical Polyelectrolyte Brushes. Langmuir, 2010, 26, 4176-4183.	3.5	29
148	Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. Journal of Physical Chemistry C, 2010, 114, 8814-8820.	3.1	1,068
149	<i>In Situ</i> Growth of Catalytic Active Auâ^Pt Bimetallic Nanorods in Thermoresponsive Coreâ^Shell Microgels. ACS Nano, 2010, 4, 7078-7086.	14.6	164
150	Polymer templated nanocrystalline titania network for solid state dye sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 7255.	6.7	11
151	Thermoresponsive colloidal molecules. Soft Matter, 2010, 6, 1125.	2.7	20
152	Wellâ€Defined Crystalline TiO ₂ Nanoparticles Generated and Immobilized on a Colloidal Nanoreactor. Macromolecular Chemistry and Physics, 2009, 210, 377-386.	2.2	42
153	Supramolecular Structures Generated by Spherical Polyelectrolyte Brushes and their Application in Catalysis. Macromolecular Rapid Communications, 2009, 30, 806-815.	3.9	82
154	Shaping Colloidal Rutile into Thermally Stable and Porous Mesoscopic Titania Balls. Small, 2009, 5, 1326-1333.	10.0	28
155	Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance. Langmuir, 2009, 25, 3163-3167.	3.5	114
156	Charge-Induced Self-Assembly of 2-Dimensional Thermosensitive Microgel Particle Patterns. Langmuir, 2009, 25, 13100-13105.	3.5	42
157	Template-Directed Synthesis of Hybrid Titania Nanowires within Coreâ [°] Shell Bishydrophilic Cylindrical Polymer Brushes. Chemistry of Materials, 2009, 21, 4146-4154.	6.7	53
158	Salt-Induced Aggregation of Polyelectrolyteâ^'Amphiphilic Dendron Complexes in THF Solutions. Langmuir, 2009, 25, 2075-2080.	3.5	19
159	Thermosensitive core-shell microgel as a "nanoreactor―for catalytic active metal nanoparticles. Journal of Materials Chemistry, 2009, 19, 3955.	6.7	191
160	Composite polypyrrole-containing particles and electrical properties of thin films prepared therefrom. Polymer, 2008, 49, 5002-5012.	3.8	31
161	Design of Multicomponent Microgels by Selective Deposition of Nanomaterials. Small, 2008, 4, 2016-2024.	10.0	42
162	C–C Coupling Reaction of Triphenylbismuth(V) Derivatives and Olefins in the Presence of Palladium Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. European Journal of Inorganic Chemistry, 2008, 2008, 379-383.	2.0	22

#	Article	IF	CITATIONS
163	Preparation of Submicrometer-Sized Clusters from Polymer Spheres Using Ultrasonication. Langmuir, 2008, 24, 12126-12128.	3.5	45
164	Dumbbell-Shaped Polyelectrolyte Brushes Studied by Depolarized Dynamic Light Scattering. Journal of Physical Chemistry B, 2008, 112, 14843-14850.	2.6	54
165	In Situ Formation of Ag Nanoparticles in Spherical Polyacrylic Acid Brushes by UV Irradiation. Journal of Physical Chemistry C, 2007, 111, 7676-7681.	3.1	221
166	Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Coreâ ⁻ Shell Microgels. Chemistry of Materials, 2007, 19, 1062-1069.	6.7	662
167	Composite Hydrogels: Robust Carriers for Catalytic Nanoparticles. Macromolecular Chemistry and Physics, 2007, 208, 254-261.	2.2	123
168	Mechanism of the Formation of Amorphous Gold Nanoparticles within Spherical Polyelectrolyte Brushes. Macromolecular Chemistry and Physics, 2007, 208, 1542-1547.	2.2	100
169	"Smart―nanoparticles: Preparation, characterization and applications. Polymer, 2007, 48, 1815-1823.	3.8	385
170	Synthesis and Characterization of Poly(vinylcaprolactam)-Based Microgels Exhibiting Temperature and pH-Sensitive Properties. Macromolecules, 2006, 39, 7701-7707.	4.8	150
171	Thermosensitive Coreâ^'Shell Particles as Carrier Systems for Metallic Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 3930-3937.	2.6	320
172	Hybrid Microgels Containing Gold Nanoparticles. E-Polymers, 2006, 6, .	3.0	2
172 173	Hybrid Microgels Containing Gold Nanoparticles. E-Polymers, 2006, 6, . â€~Nano-tree'—type spherical polymer brush particles as templates for metallic nanoparticles. Polymer, 2006, 47, 4985-4995.	3.8	143
	â€~Nano-tree'—type spherical polymer brush particles as templates for metallic nanoparticles. Polymer,		
173	â€~Nano-tree'—type spherical polymer brush particles as templates for metallic nanoparticles. Polymer, 2006, 47, 4985-4995. Polymeric particles with conjugated polymer: Layer on its surface as effective adsorbents of amino	3.8	143
173 174	†Nano-tree†1 â ê type spherical polymer brush particles as templates for metallic nanoparticles. Polymer, 2006, 47, 4985-4995. Polymeric particles with conjugated polymer: Layer on its surface as effective adsorbents of amino acids. Polymer, 2006, 47, 6536-6543. Thermosensitive Core†Shell Particles as Carriers for Ag Nanoparticles: Modulating the Catalytic	3.8	143
173 174 175	†Nano-tree †M†'type spherical polymer brush particles as templates for metallic nanoparticles. Polymer, 2006, 47, 4985-4995. Polymeric particles with conjugated polymer: Layer on its surface as effective adsorbents of amino acids. Polymer, 2006, 47, 6536-6543. Thermosensitive Core†"Shell Particles as Carriers for Ag Nanoparticles: Modulating the Catalytic Activity by a Phase Transition in Networks. Angewandte Chemie - International Edition, 2006, 45, 813-816. Preparation of Hybrid Microgels Functionalized by Silver Nanoparticles. Macromolecular Rapid	3.8 3.8	143 12 698
173 174 175 176	†Nano-tree †M†"type spherical polymer brush particles as templates for metallic nanoparticles. Polymer, 2006, 47, 4985-4995. Polymeric particles with conjugated polymer: Layer on its surface as effective adsorbents of amino acids. Polymer, 2006, 47, 6536-6543. Thermosensitive Core†"Shell Particles as Carriers for Ag Nanoparticles: Modulating the Catalytic Activity by a Phase Transition in Networks. Angewandte Chemie - International Edition, 2006, 45, 813-816. Preparation of Hybrid Microgels Functionalized by Silver Nanoparticles. Macromolecular Rapid Communications, 2006, 27, 344-350. Preparation of Polystyrene-Poly(N-isopropylacrylamide) (PS-PNIPA) Core-Shell Particles by	3.8 3.8 13.8 3.9	143 12 698 110
173 174 175 176	â€Nano-tree'â€"type spherical polymer brush particles as templates for metallic nanoparticles. Polymer, 2006, 47, 4985-4995. Polymeric particles with conjugated polymer: Layer on its surface as effective adsorbents of amino acids. Polymer, 2006, 47, 6536-6543. Thermosensitive Coreâ€"Shell Particles as Carriers for Ag Nanoparticles: Modulating the Catalytic Activity by a Phase Transition in Networks. Angewandte Chemie - International Edition, 2006, 45, 813-816. Preparation of Hybrid Microgels Functionalized by Silver Nanoparticles. Macromolecular Rapid Communications, 2006, 27, 344-350. Preparation of Polystyrene-Poly(N-isopropylacrylamide) (PS-PNIPA) Core-Shell Particles by Photoemulsion Polymerization. Macromolecular Rapid Communications, 2006, 27, 1137-1141. Tuneable Catalytic Properties of Hybrid Microgels Containing Gold Nanoparticles. Journal of	3.8 3.8 13.8 3.9	143 12 698 110

#	ARTICLE	IF	CITATION
181	Temperature-Sensitive Hybrid Microgels with Magnetic Properties. Langmuir, 2004, 20, 10706-10711.	3.5	135
182	Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels. 3. Incorporation of polypyrrole by selective microgel swelling in ethanol–water mixtures. Polymer, 2004, 45, 1079-1087.	3.8	32
183	Synthesis and characterization of polypyrrole dispersions prepared with different dopants. Macromolecular Symposia, 2004, 210, 411-417.	0.7	18
184	Preparation and Characterization of Acetoacetoxyethyl Methacrylate-Based Gels. Macromolecular Chemistry and Physics, 2003, 204, 2031-2039.	2.2	23
185	Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 1â€"synthesis and characterization. Polymer, 2003, 44, 7821-7827.	3.8	130
186	Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 2. Incorporation of polypyrrole. Polymer, 2003, 44, 7651-7659.	3.8	50
187	Dispersion polymerization of pyrrole in the presence of poly(vinyl methyl ether) microgels. Polymer, 2002, 43, 5723-5729.	3.8	37
188	Modification of PP by blending with PS and reactive polymers. Macromolecular Symposia, 2001, 164, 369-376.	0.7	3