Wen-Guang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4363126/publications.pdf

Version: 2024-02-01

64 papers

3,015 citations

172457 29 h-index 54 g-index

66 all docs 66
docs citations

66 times ranked 2997 citing authors

#	Article	IF	CITATIONS
1	A Highly Efficient Photocatalytic System for Hydrogen Production by a Robust Hydrogenase Mimic in an Aqueous Solution. Angewandte Chemie - International Edition, 2011, 50, 3193-3197.	13.8	315
2	Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C–H Amination and Hydroxylation. Journal of the American Chemical Society, 2016, 138, 10080-10083.	13.7	280
3	Hierarchical Assembly of a {Mn ^{II} ₁₅ Mn ^{III} ₄ } Brucite Disc: Step-by-Step Formation and Ferrimagnetism. Journal of the American Chemical Society, 2016, 138, 1328-1334.	13.7	179
4	Assembly of silver Trigons into a buckyball-like Ag ₁₈₀ nanocage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12132-12137.	7.1	177
5	Artificial Photosynthetic Systems Based on [FeFe]-Hydrogenase Mimics: the Road to High Efficiency for Light-Driven Hydrogen Evolution. ACS Catalysis, 2012, 2, 407-416.	11.2	175
6	Photocatalytic Hydrogen Evolution from Rhenium(I) Complexes to [FeFe] Hydrogenase Mimics in Aqueous SDS Micellar Systems: A Biomimetic Pathway. Langmuir, 2010, 26, 9766-9771.	3.5	124
7	Iron-Catalyzed 1,2-Selective Hydroboration of <i>N</i> -Heteroarenes. Journal of the American Chemical Society, 2017, 139, 17775-17778.	13.7	93
8	Photocatalytic Hydrogen Evolution by [FeFe] Hydrogenase Mimics in Homogeneous Solution. Chemistry - an Asian Journal, 2010, 5, 1796-1803.	3.3	72
9	Robust Metal–Organic Framework Containing Benzoselenadiazole for Highly Efficient Aerobic Cross-dehydrogenative Coupling Reactions under Visible Light. Inorganic Chemistry, 2016, 55, 1005-1007.	4.0	71
10	Unsensitized Photochemical Hydrogen Production Catalyzed by Diiron Hydrides. Journal of the American Chemical Society, 2012, 134, 4525-4528.	13.7	69
11	Isolation of a Mixed Valence Diiron Hydride: Evidence for a Spectator Hydride in Hydrogen Evolution Catalysis. Journal of the American Chemical Society, 2013, 135, 3633-3639.	13.7	63
12	Iron-Catalyzed Reductive Coupling of Nitroarenes with Olefins: Intermediate of Iron–Nitroso Complex. ACS Catalysis, 2020, 10, 276-281.	11.2	62
13	Crystallographic Characterization of a Fully Rotated, Basic Diiron Dithiolate: Model for the H _{red} State?. Chemistry - A European Journal, 2013, 19, 15476-15479.	3.3	61
14	Space Craft-like Octanuclear Co(II)-Silsesquioxane Nanocages: Synthesis, Structure, Magnetic Properties, Solution Behavior, and Catalytic Activity for Hydroboration of Ketones. Inorganic Chemistry, 2019, 58, 4574-4582.	4.0	57
15	Facile Synthesis and Functionality-Dependent Electrochemistry of Fe-Only Hydrogenase Mimics. Inorganic Chemistry, 2008, 47, 8101-8111.	4.0	55
16	Electron transfer and hydrogen generation from a molecular dyad: platinum(ii) alkynyl complex anchored to [FeFe] hydrogenase subsite mimic. Dalton Transactions, 2012, 41, 2420.	3.3	55
17	Benzene C–H Etherification via Photocatalytic Hydrogen-Evolution Cross-Coupling Reaction. Organic Letters, 2017, 19, 2206-2209.	4.6	55
18	Ni–O Cooperation versus Nickel(II) Hydride in Catalytic Hydroboration of <i>N</i> Heteroarenes. ACS Catalysis, 2019, 9, 3849-3857.	11.2	55

#	Article	IF	Citations
19	Activation of Epoxides by a Cooperative Iron–Thiolate Catalyst: Intermediacy of Ferrous Alkoxides in Catalytic Hydroboration. ACS Catalysis, 2017, 7, 7709-7717.	11.2	53
20	Fluorophenyl-substituted Fe-only hydrogenases active site ADT models: different electrocatalytic process for proton reduction in HOAc and HBF4/Et2O. Dalton Transactions, 2009, , 2712.	3.3	51
21	A triad [FeFe] hydrogenase system for light-driven hydrogen evolution. Chemical Communications, 2011, 47, 8406.	4.1	50
22	Controlled partial transfer hydrogenation of quinolines by cobalt-amido cooperative catalysis. Nature Communications, 2020, 11, 1249.	12.8	49
23	New Reactions of Terminal Hydrides on a Diiron Dithiolate. Journal of the American Chemical Society, 2014, 136, 5773-5782.	13.7	45
24	Addition of a Bâ€"H Bond across an Amidoâ€"Cobalt Bond: Co ^{II} â€"H-Catalyzed Hydroboration of Olefins. Organometallics, 2018, 37, 1462-1467.	2.3	41
25	Terminal Thiolate-Dominated H/D Exchanges and H ₂ Release: Diiron Thiol–Hydride. Journal of the American Chemical Society, 2018, 140, 11454-11463.	13.7	41
26	Cooperative Molybdenum-Thiolate Reactivity for Transfer Hydrogenation of Nitriles. ACS Catalysis, 2020, 10, 380-390.	11.2	40
27	Heptanuclear Co ^{II} ₅ Co ^{III} ₂ Cluster as Efficient Water Oxidation Catalyst. Inorganic Chemistry, 2017, 56, 1591-1598.	4.0	39
28	An Octanuclear Cobalt Cluster Protected by Macrocyclic Ligand: In Situ Ligand-Transformation-Assisted Assembly and Single-Molecule Magnet Behavior. Inorganic Chemistry, 2020, 59, 5683-5693.	4.0	36
29	Computational Investigation of [FeFe]-Hydrogenase Models: Characterization of Singly and Doubly Protonated Intermediates and Mechanistic Insights. Inorganic Chemistry, 2014, 53, 10301-10311.	4.0	30
30	Hydride Transfer from Iron(II) Hydride Compounds to NAD(P) < sup>+ < /sup> Analogues. Organometallics, 2016, 35, 1151-1159.	2.3	28
31	Sequential Transformation of Terminal Alkynes to 1,3-Dienes by a Cooperative Cobalt Pyridonate Catalyst. Organometallics, 2019, 38, 3752-3759.	2.3	27
32	Interplay between Terminal and Bridging Diiron Hydrides in Neutral and Oxidized States. Organometallics, 2017, 36, 2245-2253.	2.3	26
33	Nanosized Carbon Macrocycles Based on a Planar Chiral Pseudo <i>Meta</i> â€{2.2]Paracyclophane. Chemistry - A European Journal, 2022, 28, .	3.3	26
34	A Parent Iron Amido Complex in Catalysis of Ammonia Oxidation. Journal of the American Chemical Society, 2022, 144, 4365-4375.	13.7	26
35	Decarboxylative sulfenylation of amino acids <i>via</i> metallaphotoredox catalysis. Organic Chemistry Frontiers, 2019, 6, 3224-3227.	4.5	25
36	Bimetallic nickel–cobalt hydrides in H ₂ activation and catalytic proton reduction. Chemical Science, 2019, 10, 761-767.	7.4	22

#	Article	IF	CITATIONS
37	Sterically Stabilized Terminal Hydride of a Diiron Dithiolate. Inorganic Chemistry, 2018, 57, 1988-2001.	4.0	21
38	Cobalt-Catalyzed Selective Dearomatization of Pyridines to <i>N</i> â€"H 1,4-Dihydropyridines. ACS Catalysis, 2022, 12, 5013-5021.	11.2	19
39	Iron-Catalyzed Regiodivergent Hydrostannation of Alkynes: Intermediacy of Fe(IV)–H versus Fe(II)–Vinylidene. Journal of the American Chemical Society, 2021, 143, 409-419.	13.7	17
40	Selective Etherification of Calix[4] arenes. Synthetic Communications, 1999, 29, 3711-3718.	2.1	16
41	Synthesis, structure and electrochemical property of diphenylacetypene-substituted diiron azadithiolates as active site of Fe-only hydrogenases. Tetrahedron Letters, 2007, 48, 4775-4779.	1.4	16
42	Iron(II) hydrides bearing a tetradentate PSNP ligand. Chinese Chemical Letters, 2018, 29, 949-953.	9.0	16
43	Kagóme Cobalt(II)â€Organic Layers as Robust Scaffolds for Highly Efficient Photocatalytic Oxygen Evolution. ChemSusChem, 2016, 9, 1146-1152.	6.8	15
44	Iron–cobalt-catalyzed heterotrimerization of alkynes and nitriles to polyfunctionalized pyridines. Organic Chemistry Frontiers, 2020, 7, 2196-2201.	4.5	15
45	Multifaceted Bicubane Co4Clusters: Magnetism, Photocatalytic Oxygen Evolution, and Electrical Conductivity. European Journal of Inorganic Chemistry, 2016, 2016, 3253-3261.	2.0	14
46	Cobalt-catalyzed radical cyclization of isocyanides forming phenanthridine derivatives. Organic Chemistry Frontiers, 2018, 5, 2997-3002.	4.5	14
47	Synthesis of organic-inorganic hybrid compounds and their self-assembled behavior in different solvents. Journal of Colloid and Interface Science, 2018, 519, 81-87.	9.4	13
48	Solvent Effects on Hydride Transfer from Cp*(P-P)FeH to BNA ⁺ Cation. Organometallics, 2017, 36, 1238-1244.	2.3	12
49	Photocatalytic Synthesis of Quinolines via Povarov Reaction under Oxidant-Free Conditions. Organic Letters, 2022, 24, 1180-1185.	4.6	11
50	New Class of Hydrido Iron(II) Compounds with <i>cis</i> à€Reactive Sites: Combination of Iron and Diphosphinodithio Ligand. Chemistry - an Asian Journal, 2016, 11, 2271-2277.	3.3	10
51	Synthetic [NiFe] models with a fluxional CO ligand. Dalton Transactions, 2017, 46, 13681-13685.	3.3	7
52	Dehydrogenation of iron amido-borane and resaturation of the imino-borane complex. Chemical Science, 2021, 12, 2885-2889.	7.4	7
53	Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol. Organometallics, 2017, 36, 3135-3141.	2.3	6
54	Heteronuclear assembly of Ni–Cu dithiolato complexes: synthesis, structures, and reactivity studies. Inorganic Chemistry Frontiers, 2017, 4, 706-711.	6.0	5

#	Article	IF	CITATIONS
55	Synthetic [FeFe]-H2ase models bearing phosphino thioether chelating ligands. Chinese Chemical Letters, 2018, 29, 1651-1655.	9.0	5
56	Reactivity of the diphosphinodithio ligated nickel(0) complex toward alkyl halides and resultant nickel(<scp>i</scp>) and nickel(<scp>ii</scp>)–alkyl complexes. Dalton Transactions, 2018, 47, 15757-15764.	3.3	5
57	Catalytic Hydrogen Production Using A Cobalt Catalyst Bearing a Phosphinoamine Ligand. ChemPhotoChem, 2019, 3, 220-224.	3.0	5
58	Reductive Coupling of Bridging Diaryl Ligands in Half-Sandwich Cobalt(II) Dimers: Revisiting Triple-Decker Cobalt(I) Complexes. Organometallics, 2019, 38, 3610-3616.	2.3	4
59	Facile Transformations of a Binuclear Cp*Co(II) Diamidonaphthalene Complex to Mixed-Valent Co(II)Co(III), Co(III)(μ-H)Co(III), and Co(III)(μ-OH)Co(III) Derivatives. Inorganic Chemistry, 2022, 61, 2204-2210.	4.0	4
60	Insertion of BH ₃ into a Cobalt–Aryl Bond: Synthetic Routes to Arylborohydride and Borane-Amino Hydride Complexes. Organometallics, 2021, 40, 1692-1698.	2.3	3
61	Syntheses of Chiral Calix [4] arene Derivatives Bearing Amino Acid Residue. Chinese Journal of Chemistry, 2003, 21, 931-936.	4.9	2
62	Azo-bridged New Diiron Carbonyl Complex: Synthesis of Fe ₂ (NR) ₂ -(CO) _{6-<i>x</i>} (PR ₃) _{<i>x</i>} and the Derivatives. Acta Chimica Sinica, 2017, 75, 92.	1.4	2
63	Cobalt-catalyzed regioselective hydrohydrazination of epoxides. Organic and Biomolecular Chemistry, 2020, 18, 1572-1576.	2.8	2
64	Cyclic and Non-Cyclic Pi Complexes of Molybdenum. , 2022, , 174-256.		1