Pascal Genschik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4362533/publications.pdf

Version: 2024-02-01

107	17,855	56	106
papers	citations	h-index	g-index
115	115	115	26496
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The Arabidopsis F-box protein FBW2 targets AGO1 for degradation to prevent spurious loading of illegitimate small RNA. Cell Reports, 2022, 39, 110671.	6.4	16
2	Immunocapture of dsRNA-bound proteins provides insight into <i>Tobacco rattle virus</i> replication complexes and reveals Arabidopsis DRB2 to be a wide-spectrum antiviral effector. Plant Cell, 2021, 33, 3402-3420.	6.6	16
3	Connections between the Cell Cycle and the DNA Damage Response in Plants. International Journal of Molecular Sciences, 2021, 22, 9558.	4.1	14
4	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Лf 50 6	22 Td (editior 1,430
5	Atypical molecular features of RNA silencing against the phloem-restricted polerovirus TuYV. Nucleic Acids Research, 2021, 49, 11274-11293.	14.5	10
6	Inhibition of <i>Arabidopsis thaliana</i> CINâ€like TCP transcription factors by <i>Agrobacterium</i> Tâ€DNAâ€encoded 6B proteins. Plant Journal, 2020, 101, 1303-1317.	5.7	5
7	The protein turnover of Arabidopsis BPM1 is involved in regulation of flowering time and abiotic stress response. Plant Molecular Biology, 2020, 102, 359-372.	3.9	13
8	Plant proteostasis – shaping the proteome: a research community aiming to understand molecular mechanisms that control protein abundance. New Phytologist, 2020, 227, 1028-1033.	7.3	7
9	The F-Box-Like Protein FBL17 Is a Regulator of DNA-Damage Response and Colocalizes with RETINOBLASTOMA RELATED1 at DNA Lesion Sites. Plant Physiology, 2020, 183, 1295-1305.	4.8	22
10	CUL3 ^{BPM} E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6205-6215.	7.1	67
11	The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15725-15734.	7.1	56
12	The viral F-box protein PO induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22872-22883.	7.1	83
13	Cell Cycle–Dependent Regulation and Function of ARGONAUTE1 in Plants. Plant Cell, 2019, 31, 1734-1750.	6.6	24
14	RPN10: A Case Study for Ubiquitin Binding Proteins and More. Plant Cell, 2019, 31, 1398-1399.	6.6	2
15	SIAMESE-RELATED1 Is Regulated Posttranslationally and Participates in Repression of Leaf Growth under Moderate Drought. Plant Physiology, 2018, 176, 2834-2850.	4.8	36
16	The plant hormone ethylene restricts <i>Arabidopsis</i> growth via the epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4130-E4139.	7.1	127
17	A Suppressor Screen for AGO1 Degradation by the Viral F-Box PO Protein Uncovers a Role for AGO DUF1785 in sRNA Duplex Unwinding. Plant Cell, 2018, 30, 1353-1374.	6.6	44
18	Autophagy: A Double-Edged Sword to Fight Plant Viruses. Trends in Plant Science, 2017, 22, 646-648.	8.8	29

#	Article	IF	Citations
19	Dark night, cold ground. Nature Plants, 2017, 3, 846-847.	9.3	1
20	DNA DAMAGE BINDING PROTEIN2 Shapes the DNA Methylation Landscape. Plant Cell, 2016, 28, 2043-2059.	6.6	16
21	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
22	Autophagy in Plants – What's New on the Menu?. Trends in Plant Science, 2016, 21, 134-144.	8.8	221
23	The Plant CellIntroduces Breakthrough Reports: A New Forum for Cutting-Edge Plant Research. Plant Cell, 2015, , tpc.15.00862.	6.6	1
24	The Control of <i>Arabidopsis thaliana</i> Growth by Cell Proliferation and Endoreplication Requires the F-Box Protein FBL17. Plant Cell, 2015, 27, 1461-1476.	6.6	53
25	Reversible ubiquitylation in plant biology. Frontiers in Plant Science, 2014, 5, 707.	3.6	2
26	When RNA and protein degradation pathways meet. Frontiers in Plant Science, 2014, 5, 161.	3.6	9
27	Selective protein degradation: a rheostat to modulate cell-cycle phase transitions. Journal of Experimental Botany, 2014, 65, 2603-2615.	4.8	35
28	Class I TCP-DELLA Interactions in Inflorescence Shoot Apex Determine Plant Height. Current Biology, 2014, 24, 1923-1928.	3.9	209
29	The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO Journal, 2013, 32, 2307-2320.	7.8	222
30	Auxin-Binding Protein 1 is a negative regulator of the SCFTIR1/AFB pathway. Nature Communications, 2013, 4, 2496.	12.8	66
31	The <i>Arabidopsis</i> DELLA <i>RGA</i> - <i>LIKE3</i> Is a Direct Target of MYC2 and Modulates Jasmonate Signaling Responses. Plant Cell, 2012, 24, 3307-3319.	6.6	273
32	Roles of GIG1 and UVI4 in genome duplication in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2012, 7, 1079-1081.	2.4	8
33	Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15942-15946.	7.1	251
34	<i>Arabidopsis</i> WD REPEAT DOMAIN55 Interacts with DNA DAMAGED BINDING PROTEIN1 and Is Required for Apical Patterning in the Embryo. Plant Cell, 2012, 24, 1013-1033.	6.6	27
35	APC/C-Mediated Degradation of dsRNA-Binding Protein 4 (DRB4) Involved in RNA Silencing. PLoS ONE, 2012, 7, e35173.	2.5	19
36	MATH/BTB CRL3 Receptors Target the Homeodomain-Leucine Zipper ATHB6 to Modulate Abscisic Acid Signaling. Developmental Cell, 2011, 21, 1116-1128.	7.0	134

#	Article	IF	Citations
37	The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain <i>MEDEA</i> parental imprinting. EMBO Journal, 2011, 30, 731-743.	7.8	68
38	The conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2to maintain genome integrity upon UV stress. EMBO Journal, 2011, 30, 1162-1172.	7.8	47
39	GIGAS CELL1, a Novel Negative Regulator of the Anaphase-Promoting Complex/Cyclosome, Is Required for Proper Mitotic Progression and Cell Fate Determination in <i>Arabidopsis</i> Arabidopsis	6.6	107
40	Phosphorylation of a mitotic kinesin-like protein and a MAPKKK by cyclin-dependent kinases (CDKs) is involved in the transition to cytokinesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17844-17849.	7.1	59
41	MSI4/FVE interacts with CUL4–DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3430-3435.	7.1	154
42	Interaction between the bHLH Transcription Factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 Reveals Molecular Linkage between the Regulation of Iron Acquisition and Ethylene Signaling in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 1815-1829.	6.6	256
43	Modulation of Phototropic Responsiveness in <i>Arabidopsis</i> through Ubiquitination of Phototropin 1 by the CUL3-Ring E3 Ubiquitin Ligase CRL3NPH3 Â. Plant Cell, 2011, 23, 3627-3640.	6.6	131
44	DELLAs Regulate Chlorophyll and Carotenoid Biosynthesis to Prevent Photooxidative Damage during Seedling Deetiolation in $\langle i \rangle$ Arabidopsis $\langle i \rangle$ Â Â. Plant Cell, 2011, 23, 1849-1860.	6.6	148
45	Selective proteolysis sets the tempo of the cell cycle. Current Opinion in Plant Biology, 2010, 13, 631-639.	7.1	62
46	det1-1-induced UV-C hyposensitivity through UVR3 and PHR1 photolyase gene over-expression. Plant Journal, 2010, 63, 392-404.	5.7	41
47	CULLIN 4-RING FINGER-LIGASE plays a key role in the control of endoreplication cycles in Arabidopsis trichomes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15275-15280.	7.1	44
48	COP9 Signalosome- and 26S Proteasome-dependent Regulation of SCFTIR1 Accumulation in Arabidopsis. Journal of Biological Chemistry, 2009, 284, 7920-7930.	3.4	58
49	The APC/C E3 ligase remains active in most post-mitotic <i>Arabidopsis</i> cells and is required for proper vasculature development and organization. Development (Cambridge), 2009, 136, 1475-1485.	2.5	67
50	Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. Journal of Experimental Botany, 2009, 60, 1085-1092.	4.8	292
51	Arabidopsis CULLIN3 Genes Regulate Primary Root Growth and Patterning by Ethylene-Dependent and -Independent Mechanisms. PLoS Genetics, 2009, 5, e1000328.	3.5	88
52	The Arabidopsis thaliana F-Box Protein FBL17 Is Essential for Progression through the Second Mitosis during Pollen Development. PLoS ONE, 2009, 4, e4780.	2.5	124
53	Preferential Up-Regulation of G2/M Phase-Specific Genes by Overexpression of the Hyperactive Form of NtmybA2 Lacking Its Negative Regulation Domain in Tobacco BY-2 Cells Â. Plant Physiology, 2009, 149, 1945-1957.	4.8	32
54	Gibberellin Signaling Controls Cell Proliferation Rate in Arabidopsis. Current Biology, 2009, 19, 1188-1193.	3.9	410

#	Article	IF	CITATIONS
55	Proteasome-Mediated Turnover of the Transcription Coactivator NPR1 Plays Dual Roles in Regulating Plant Immunity. Cell, 2009, 137, 860-872.	28.9	494
56	Specialization of CDC27 function in the <i>Arabidopsis thaliana</i> anaphaseâ€promoting complex (APC/C). Plant Journal, 2008, 53, 78-89.	5.7	74
57	Plant DELLAs Restrain Growth and Promote Survival of Adversity by Reducing the Levels of Reactive Oxygen Species. Current Biology, 2008, 18, 656-660.	3.9	453
58	Regulation and Role of Arabidopsis CUL4-DDB1A-DDB2 in Maintaining Genome Integrity upon UV Stress. PLoS Genetics, 2008, 4, e1000093.	3.5	101
59	The Cold-Inducible CBF1 Factor–Dependent Signaling Pathway Modulates the Accumulation of the Growth-Repressing DELLA Proteins via Its Effect on Gibberellin Metabolism. Plant Cell, 2008, 20, 2117-2129.	6.6	658
60	The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6484-6489.	7.1	334
61	The Polerovirus F Box Protein PO Targets ARGONAUTE1 to Suppress RNA Silencing. Current Biology, 2007, 17, 1615-1621.	3.9	298
62	Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant Journal, 2006, 45, 423-438.	5.7	84
63	CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development inArabidopsis thaliana. Plant Journal, 2006, 47, 591-603.	5.7	131
64	F-box proteins everywhere. Current Opinion in Plant Biology, 2006, 9, 631-638.	7.1	335
65	Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14620-14625.	7.1	202
66	The Exoribonuclease XRN4 Is a Component of the Ethylene Response Pathway in Arabidopsis. Plant Cell, 2006, 18, 3047-3057.	6.6	126
67	F-box-like domain in the polerovirus protein PO is required for silencing suppressor function. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1994-1999.	7.1	254
68	Molecular and functional characterization of Arabidopsis Cullin 3A. Plant Journal, 2005, 41, 386-399.	5.7	91
69	Point mutations in Arabidopsis Cullin1 reveal its essential role in jasmonate response. Plant Journal, 2005, 42, 514-524.	5.7	88
70	Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. Plant Journal, 2005, 43, 437-448.	5.7	56
71	The RPN1 Subunit of the 26S Proteasome in Arabidopsis Is Essential for Embryogenesis. Plant Cell, 2005, 17, 2723-2737.	6.6	76
72	The Cyclin-Dependent Kinase Inhibitor KRP2 Controls the Onset of the Endoreduplication Cycle during Arabidopsis Leaf Development through Inhibition of Mitotic CDKA;1 Kinase Complexes. Plant Cell, 2005, 17, 1723-1736.	6.6	248

#	Article	IF	CITATIONS
73	Arabidopsis AtCUL3a and AtCUL3b Form Complexes with Members of the BTB/POZ-MATH Protein Family. Plant Physiology, 2005, 137, 83-93.	4.8	116
74	Plant CULLIN-based E3s: Phytohormones come first. FEBS Letters, 2005, 579, 3239-3245.	2.8	44
75	Expression of a Nondegradable Cyclin B1 Affects Plant Development and Leads to Endomitosis by Inhibiting the Formation of a Phragmoplast. Plant Cell, 2004, 16, 643-657.	6.6	121
76	Expression, Localisation and Stability of Mitotic Cyclins in Tobacco BY-2 Cells. Biotechnology in Agriculture and Forestry, 2004, , 52-65.	0.2	0
77	EIN3-Dependent Regulation of Plant Ethylene Hormone Signaling by Two Arabidopsis F Box Proteins. Cell, 2003, 115, 679-689.	28.9	681
78	First glance at the plant APC/C, a highly conserved ubiquitin–protein ligase. Trends in Plant Science, 2003, 8, 83-89.	8.8	108
79	The Arabidopsis Anaphase-Promoting Complex or Cyclosome: Molecular and Genetic Characterization of the APC2 Subunit. Plant Cell, 2003, 15, 2370-2382.	6.6	117
80	The SCFCOI1 Ubiquitin-Ligase Complexes Are Required for Jasmonate Response in Arabidopsis. Plant Cell, 2002, 14, 1919-1935.	6.6	600
81	The AtRbx1 Protein Is Part of Plant SCF Complexes, and Its Down-regulation Causes Severe Growth and Developmental Defects. Journal of Biological Chemistry, 2002, 277, 50069-50080.	3.4	59
82	Molecular Characterization of Plant Ubiquitin-Conjugating Enzymes Belonging to the UbcP4/E2-C/UBCx/UbcH10 Gene Family. Plant Physiology, 2002, 130, 1230-1240.	4.8	59
83	Null Mutation of AtCUL1 Causes Arrest in Early Embryogenesis in Arabidopsis. Molecular Biology of the Cell, 2002, 13, 1916-1928.	2.1	153
84	A gene trap Dissociation insertion line, associated with a RING-H2 finger gene, shows tissue specific and developmental regulated expression of the gene in Arabidopsis. Gene, 2002, 290, 63-71.	2.2	14
85	Mitosis in plants: how far we have come at the molecular level?. Current Opinion in Plant Biology, 2002, 5, 487-493.	7.1	36
86	Sub-cellular localisation of GFP-tagged tobacco mitotic cyclins during the cell cycle and after spindle checkpoint activation. Plant Journal, 2001, 28, 569-581.	5.7	52
87	Effects of the polyubiquitin gene Ubi. U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Molecular Biology, 2001, 45, 655-667.	3.9	64
88	Cell cycle-dependent proteolysis and ectopic overexpression of cyclin B1 in tobacco BY2 cells. Plant Journal, 2000, 24, 763-773.	5.7	93
89	Structure and mechanism of activity of the cyclic phosphodiesterase of Appr>p, a product of the tRNA splicing reaction. EMBO Journal, 2000, 19, 6207-6217.	7.8	58
90	Cell cycle-dependent proteolysis and ectopic overexpression of cyclin B1 in tobacco BY2 cells. Plant Journal, 2000, 24, 763.	5.7	6

#	Article	IF	Citations
91	Cell Cycle–Dependent Proteolysis in Plants: Identification of the Destruction Box Pathway and Metaphase Arrest Produced by the Proteasome Inhibitor MG132. Plant Cell, 1998, 10, 2063-2075.	6.6	199
92	Characterization of the Escherichia coli RNA 3′-Terminal Phosphate Cyclase and Its Ï,54-Regulated Operon. Journal of Biological Chemistry, 1998, 273, 25516-25526.	3.4	85
93	Cell Cycle-Dependent Proteolysis in Plants: Identification of the Destruction Box Pathway and Metaphase Arrest Produced by the Proteasome Inhibitor MG132. Plant Cell, 1998, 10, 2063.	6.6	110
94	Cloning and Characterization of the ArabidopsisCyclic Phosphodiesterase Which Hydrolyzes ADP-ribose 1",2―Cyclic Phosphate and Nucleoside 2′,3′-Cyclic Phosphates. Journal of Biological Chemistry, 1997, 272, 13211-13219.	3.4	42
95	The human RNA 3'-terminal phosphate cyclase is a member of a new family of proteins conserved in Eucarya, Bacteria and Archaea. EMBO Journal, 1997, 16, 2955-2967.	7.8	68
96	The 20S proteasome gene family inArabidopsis thaliana. FEBS Letters, 1997, 416, 281-285.	2.8	27
97	Identification of a new cis-regulatory element in a Nicotiana tabacum polyubiquitin gene promoter. Molecular Genetics and Genomics, 1997, 254, 258-266.	2.4	10
98	Synthesis and Characterization of the (5?? 5?)-Ester of Adenosine 5?-diphosphate with ?-D-ribofuranose cyclic 1?,2?-phosphate: A NAD derivative produced during tRNA splicing. Helvetica Chimica Acta, 1996, 79, 1005-1010.	1.6	5
99	Molecular characterization of a beta-type proteasome subunit from Arabidopsis thaliana co-expressed at a high level with an alpha-type proteasome subunit early in the cell cycle. Plant Journal, 1994, 6, 537-546.	5.7	48
100	Differential expression of several E2-type ubiquitin carrier protein genes at different developmental stages inArabidopsis thaliana andNicotiana sylvestris. Molecular Genetics and Genomics, 1994, 244, 548-556.	2.4	38
101	Structure and promoter activity of a stress and developmentally regulated polyubiquitin-encoding gene of Nicotiana tabacum. Gene, 1994, 148, 195-202.	2.2	56
102	Why are quiescent mesophyll protoplasts from Nicotiana sylvestris able to re-enter into the cell cycle and re-initiate a mitotic activity?. Biochimie, 1993, 75, 539-545.	2.6	7
103	Cloning and sequence analysis of a cDNA clone fromArabidopsis thalianahomologous to a proteasome α subunit fromDrosophila. FEBS Letters, 1992, 309, 311-315.	2.8	36
104	Isolation and characterization of a cDNA encoding a 3-hydroxy-3-methylglutaryl coenzyme A reductase from Nicotiana sylvestris. Plant Molecular Biology, 1992, 20, 337-341.	3.9	50
105	Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses. Plant Molecular Biology, 1992, 20, 897-910.	3.9	76
106	Sequence of a ubiquitin carboxyl extension protein of Nicotiana tabacum. Nucleic Acids Research, 1990, 18, 4007-4007.	14.5	11
107	The UPS: An Engine That Drives the Cell Cycle. , 0, , 87-113.		2