
Huey W Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4362288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores. Biophysical Journal, 2001, 81, 1475-1485.	O.5	933
2	Membrane Pores Induced by Magainin. Biochemistry, 1996, 35, 13723-13728.	2.5	743
3	Action of Antimicrobial Peptides:  Two-State Model. Biochemistry, 2000, 39, 8347-8352.	2.5	693
4	Molecular mechanism of antimicrobial peptides: The origin of cooperativity. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1292-1302.	2.6	386
5	Crystallization of Antimicrobial Pores in Membranes: Magainin and Protegrin. Biophysical Journal, 2000, 79, 2002-2009.	0.5	367
6	The Condensing Effect of Cholesterol in Lipid Bilayers. Biophysical Journal, 2007, 92, 3960-3967.	0.5	353
7	Membrane thinning caused by magainin 2. Biochemistry, 1995, 34, 16764-16769.	2.5	308
8	Molecular Mechanism of Peptide-Induced Pores in Membranes. Physical Review Letters, 2004, 92, 198304.	7.8	284
9	Process of inducing pores in membranes by melittin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14243-14248.	7.1	282
10	Observation of a Membrane Fusion Intermediate Structure. Science, 2002, 297, 1877-1879.	12.6	280
11	Experimental Evidence for Hydrophobic Matching and Membrane-Mediated Interactions in Lipid Bilayers Containing Gramicidin. Biophysical Journal, 1999, 76, 937-945.	0.5	261
12	Energetics of Pore Formation Induced by Membrane Active Peptidesâ€. Biochemistry, 2004, 43, 3590-3599.	2.5	260
13	Evidence for Membrane Thinning Effect as the Mechanism for Peptide-Induced Pore Formation. Biophysical Journal, 2003, 84, 3751-3758.	O.5	258
14	Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5087-5092.	7.1	243
15	Structure of transmembrane pore induced by Bax-derived peptide: Evidence for lipidic pores. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17379-17383.	7.1	197
16	Lipid-alamethicin interactions influence alamethicin orientation. Biophysical Journal, 1991, 60, 1079-1087.	0.5	188
17	Membrane Thinning Effect of the Î ² -Sheet Antimicrobial Protegrin. Biochemistry, 2000, 39, 139-145.	2.5	185
18	Antimicrobial Peptide Pores in Membranes Detected by Neutron In-Plane Scattering. Biochemistry, 1995, 34, 15614-15618.	2.5	171

HUEY W HUANG

#	Article	IF	CITATIONS
19	Transmembrane Pores Formed by Human Antimicrobial Peptide LL-37. Biophysical Journal, 2011, 100, 1688-1696.	0.5	156
20	Sigmoidal Concentration Dependence of Antimicrobial Peptide Activities: A Case Study on Alamethicin. Biophysical Journal, 2002, 82, 908-914.	0.5	154
21	Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1190, 181-184.	2.6	144
22	Hydrophobic Mismatch between Helices and Lipid Bilayers. Biophysical Journal, 2003, 84, 379-385.	0.5	135
23	Structure of the Alamethicin Pore Reconstructed by X-Ray Diffraction Analysis. Biophysical Journal, 2008, 94, 3512-3522.	0.5	133
24	Multiple States of β-Sheet Peptide Protegrin in Lipid Bilayersâ€. Biochemistry, 1998, 37, 17331-17338.	2.5	131
25	Many-Body Effect of Antimicrobial Peptides: On the Correlation Between Lipid's Spontaneous Curvature and Pore Formation. Biophysical Journal, 2005, 89, 4006-4016.	0.5	124
26	Theoretical Analysis of Hydrophobic Matching and Membrane-Mediated Interactions in Lipid Bilayers Containing Gramicidin. Biophysical Journal, 1999, 76, 3176-3185.	0.5	123
27	Membrane-Thinning Effect of Curcumin. Biophysical Journal, 2008, 94, 4331-4338.	0.5	115
28	Location of ion-binding sites in the gramicidin channel by X-ray diffraction. Journal of Molecular Biology, 1991, 218, 847-858.	4.2	111
29	Interaction of Tea Catechin (—)-Epigallocatechin Gallate with Lipid Bilayers. Biophysical Journal, 2009, 96, 1026-1035.	0.5	101
30	Interaction of Antimicrobial Peptides with Lipopolysaccharidesâ€. Biochemistry, 2003, 42, 12251-12259.	2.5	100
31	Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures. Biophysical Journal, 2007, 92, 2819-2830.	0.5	99
32	New Phases of Phospholipids and Implications to the Membrane Fusion Problemâ€. Biochemistry, 2003, 42, 6631-6635.	2.5	89
33	Circular dichroism of oriented \hat{I}_{\pm} helices. I. Proof of the exciton theory. Journal of Chemical Physics, 1988, 89, 2531-2538.	3.0	85
34	A Rhombohedral Phase of Lipid Containing a Membrane Fusion Intermediate Structure. Biophysical Journal, 2003, 84, 1808-1817.	0.5	85
35	The Bound States of Amphipathic Drugs in Lipid Bilayers: Study of Curcumin. Biophysical Journal, 2008, 95, 2318-2324.	0.5	84
36	Critical Swelling of Phospholipid Bilayers. Physical Review Letters, 1997, 79, 4026-4029.	7.8	75

HUEY W HUANG

#	Article	IF	CITATIONS
37	Free Energies of Molecular Bound States in Lipid Bilayers: Lethal Concentrations of Antimicrobial Peptides. Biophysical Journal, 2009, 96, 3263-3272.	0.5	66
38	Interaction of Daptomycin with Lipid Bilayers: A Lipid Extracting Effect. Biochemistry, 2014, 53, 5384-5392.	2.5	66
39	Neutron Off-Plane Scattering of Aligned Membranes. I. Method of Measurement. Biophysical Journal, 1998, 75, 641-645.	0.5	60
40	Understanding membrane-active antimicrobial peptides. Quarterly Reviews of Biophysics, 2017, 50, e10.	5.7	57
41	How Type II Diabetes-Related Islet Amyloid Polypeptide Damages LipidÂBilayers. Biophysical Journal, 2012, 102, 1059-1068.	0.5	56
42	Physical Properties of Escherichia coli Spheroplast Membranes. Biophysical Journal, 2014, 107, 2082-2090.	0.5	51
43	Supramolecular Structures of Peptide Assemblies in Membranes by Neutron Off-Plane Scattering: Method of Analysis. Biophysical Journal, 1999, 77, 2648-2656.	0.5	50
44	Two States of Cyclic Antimicrobial Peptide RTD-1 in Lipid Bilayers. Biochemistry, 2002, 41, 10070-10076.	2.5	47
45	The Atlastin C-terminal Tail Is an Amphipathic Helix That Perturbs the Bilayer Structure during Endoplasmic Reticulum Homotypic Fusion. Journal of Biological Chemistry, 2015, 290, 4772-4783.	3.4	47
46	Action of Antimicrobial Peptides on Bacterial and Lipid Membranes: A Direct Comparison. Biophysical Journal, 2017, 112, 1663-1672.	0.5	47
47	DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183395.	2.6	46
48	Membrane-Mediated Peptide Conformation Change from α-Monomers to β-Aggregates. Biophysical Journal, 2010, 98, 2236-2245.	0.5	42
49	Elasticity of Lipid Bilayer Interacting with Amphiphilic Helical Peptides. Journal De Physique II, 1995, 5, 1427-1431.	0.9	39
50	Collective Chain Dynamics in Lipid Bilayers by Inelastic X-Ray Scattering. Biophysical Journal, 2003, 84, 3767-3776.	0.5	38
51	Membrane Permeability of Hydrocarbon-Cross-Linked Peptides. Biophysical Journal, 2013, 104, 1923-1932.	0.5	34
52	Molecular State of the Membrane-Active Antibiotic Daptomycin. Biophysical Journal, 2017, 113, 82-90.	0.5	33
53	Circular dichroism of oriented αâ€helices. II. Electric field oriented polypeptides. Journal of Chemical Physics, 1988, 89, 6956-6962.	3.0	31
54	Chain Packing in the Inverted Hexagonal Phase of Phospholipids:Â A Study by X-ray Anomalous Diffraction on Bromine-labeled Chains. Journal of the American Chemical Society, 2006, 128, 3800-3807.	13.7	31

HUEY W HUANG

#	Article	IF	CITATIONS
55	Comparative Study of the Condensing Effects of Ergosterol and Cholesterol. Biophysical Journal, 2016, 110, 2026-2033.	0.5	31
56	Comparison of the Effects of Daptomycin on Bacterial and Model Membranes. Biochemistry, 2018, 57, 5629-5639.	2.5	31
57	Distorted Hexagonal Phase Studied by Neutron Diffraction:Â Lipid Components Demixed in a Bent Monolayer. Langmuir, 2005, 21, 203-210.	3.5	28
58	Mode of Action of Antimicrobial Peptides on E.Âcoli Spheroplasts. Biophysical Journal, 2016, 111, 132-139.	0.5	25
59	Studies of short-wavelength collective molecular motions in lipid bilayers using high resolution inelastic X-ray scattering. Biophysical Chemistry, 2003, 105, 721-741.	2.8	22
60	Adhesion and Merging of Lipid Bilayers: A Method for Measuring the Free Energy of Adhesion and Hemifusion. Biophysical Journal, 2011, 100, 987-995.	0.5	21
61	Time-Dependent Statistics of the Ising Model in a Magnetic Field. Physical Review A, 1973, 8, 2553-2556.	2.5	19
62	Kinetic Process of β-Amyloid Formation via Membrane Binding. Biophysical Journal, 2010, 99, 544-552.	0.5	18
63	A Novel Phase of Compressed Bilayers That Models the Prestalk Transition State of Membrane Fusion. Biophysical Journal, 2012, 102, 48-55.	0.5	15
64	Method of X-Ray Anomalous Diffraction for Lipid Structures. Biophysical Journal, 2006, 91, 736-743.	0.5	14
65	Membrane-mediated amyloid formation of PrP 106–126: A kinetic study. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2422-2429.	2.6	11
66	Diffraction Techniques for Nonlamellar Phases of Phospholipids. Langmuir, 2004, 20, 9262-9269.	3.5	9
67	Rhombohedral trap for studying molecular oligomerization in membranes: application to daptomycin. Soft Matter, 2019, 15, 4326-4333.	2.7	1
68	Channel-Forming Peptides in Uniformly Aligned Multilayers of Membranes. Advances in Chemistry Series, 1994, , 83-106.	0.6	0