Jeffrey C Rathmell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4361954/publications.pdf Version: 2024-02-01

		34105	28297
114	19,951	52	105
papers	citations	h-index	g-index
122	122	122	28371
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multiplatform computational analysis of mast cells in adrenocortical carcinoma tumor microenvironment. Surgery, 2022, 171, 111-118.	1.9	3
2	The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cellular and Molecular Immunology, 2022, 19, 46-58.	10.5	39
3	MTHFD2 is a metabolic checkpoint controlling effector and regulatory TÂcell fate and function. Immunity, 2022, 55, 65-81.e9.	14.3	74
4	Microenvironmental influences on T cell immunity in cancer and inflammation. Cellular and Molecular Immunology, 2022, 19, 316-326.	10.5	38
5	Targeting Glycolysis in Alloreactive T Cells to Prevent Acute Graft-Versus-Host Disease While Preserving Graft-Versus-Leukemia Effect. Frontiers in Immunology, 2022, 13, 751296.	4.8	6
6	Altered Mitochondrial Homeostasis during Systemic Lupus Erythematosus Impairs Neutrophil Extracellular Trap Formation Rendering Neutrophils Ineffective at Combating <i>Staphylococcus aureus</i> . Journal of Immunology, 2022, 208, 454-463.	0.8	5
7	Characterization of metabolic alterations of chronic lymphocytic leukemia in the lymph node microenvironment. Blood, 2022, 140, 630-643.	1.4	14
8	Stimulating TAM-mediated anti-tumor immunity with mannose-decorated nanoparticles in ovarian cancer. BMC Cancer, 2022, 22, 497.	2.6	13
9	Retinoic acid signaling acts as a rheostat to balance Treg function. , 2022, 19, 820-833.		8
10	Low-Salt Diet Reduces Anti-CTLA4 Mediated Systemic Immune-Related Adverse Events while Retaining Therapeutic Efficacy against Breast Cancer. Biology, 2022, 11, 810.	2.8	2
11	Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nature Communications, 2022, 13, .	12.8	28
12	Systems Immunology Analyses of <i>STAT1</i> Gain-of-Function Immune Phenotypes Reveal Heterogeneous Response to IL-6 and Broad Immunometabolic Roles for STAT1. ImmunoHorizons, 2022, 6, 447-464.	1.8	3
13	BET Inhibition Enhances the Antileukemic Activity of Low-dose Venetoclax in Acute Myeloid Leukemia. Clinical Cancer Research, 2021, 27, 598-607.	7.0	16
14	Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. Journal of Clinical Investigation, 2021, 131, .	8.2	144
15	Targeting In Vivo Metabolic Vulnerabilities of Th2 and Th17 Cells Reduces Airway Inflammation. Journal of Immunology, 2021, 206, 1127-1139.	0.8	16
16	GLUT1 Expression in Tumor-Associated Neutrophils Promotes Lung Cancer Growth and Resistance to Radiotherapy. Cancer Research, 2021, 81, 2345-2357.	0.9	65
17	Obesity, Immunity, and Cancer. New England Journal of Medicine, 2021, 384, 1160-1162.	27.0	36
18	Clinical Features and Multiplatform Molecular Analysis Assist in Understanding Patient Response to Anti-PD-1/PD-L1 in Renal Cell Carcinoma. Cancers, 2021, 13, 1475.	3.7	10

#	Article	IF	CITATIONS
19	Cell-programmed nutrient partitioning in the tumour microenvironment. Nature, 2021, 593, 282-288.	27.8	491
20	The Complex Integration of T-cell Metabolism and Immunotherapy. Cancer Discovery, 2021, 11, 1636-1643.	9.4	64
21	Single-cell analysis by mass cytometry reveals metabolic states of early-activated CD8+ TÂcells during the primary immune response. Immunity, 2021, 54, 829-844.e5.	14.3	68
22	Ex Vivo High Salt Activated Tumor-Primed CD4+T Lymphocytes Exert a Potent Anti-Cancer Response. Cancers, 2021, 13, 1690.	3.7	5
23	A guide to interrogating immunometabolism. Nature Reviews Immunology, 2021, 21, 637-652.	22.7	87
24	BAFF promotes heightened BCR responsiveness and manifestations of chronic GVHD after allogeneic stem cell transplantation. Blood, 2021, 137, 2544-2557.	1.4	23
25	Macrophage-Derived MicroRNA-21 Drives Overwhelming Glycolytic and Inflammatory Response during Sepsis via Repression of the PGE2/IL-10 Axis. Journal of Immunology, 2021, 207, 902-912.	0.8	12
26	Hedgehog Signaling Regulates Metabolism and Polarization of Mammary Tumor-Associated Macrophages. Cancer Research, 2021, 81, 5425-5437.	0.9	50
27	High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine <i>N</i> -oxide. Science, 2021, 373, 813-818.	12.6	132
28	Recent Metabolic Advances for Preventing and Treating Acute and Chronic Graft Versus Host Disease. Frontiers in Immunology, 2021, 12, 757836.	4.8	10
29	Integrative computational immunogenomic profiling of cortisolâ€secreting adrenocortical carcinoma. Journal of Cellular and Molecular Medicine, 2021, 25, 10061-10072.	3.6	6
30	906â€Immunogenomic evaluation of clear cell renal carcinoma uncovers HK3 as a myeloid specific metabolic enzyme. , 2021, 9, A951-A951.		0
31	Leptin Augments Antitumor Immunity in Obesity by Repolarizing Tumor-Associated Macrophages. Journal of Immunology, 2021, 207, 3122-3130.	0.8	18
32	CD4 T cells differentially express cellular machinery for serotonin signaling, synthesis, and metabolism. International Immunopharmacology, 2020, 88, 106922.	3.8	17
33	Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Molecular Cell, 2020, 78, 1019-1033.	9.7	450
34	MRI of tumor T cell infiltration in response to checkpoint inhibitor therapy. , 2020, 8, e000328.		25
35	Immunometabolism: From basic mechanisms to translation. Immunological Reviews, 2020, 295, 5-14.	6.0	208
36	Macrophages Promote Aortic Valve Cell Calcification and Alter STAT3 Splicing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e153-e165.	2.4	24

#	Article	IF	CITATIONS
37	CD28 costimulation drives tumor-infiltrating T cell glycolysis to promote inflammation. JCI Insight, 2020, 5, .	5.0	52
38	Combined deletion of Glut1 and Glut3 impairs lung adenocarcinoma growth. ELife, 2020, 9, .	6.0	18
39	The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. ELife, 2020, 9, .	6.0	168
40	Combination immunotherapy and radiotherapy causes an abscopal treatment response in a mouse model of castration resistant prostate cancer. , 2019, 7, 218.		64
41	Mitochondrial Homeostasis in AML and Gasping for Response in Resistance to BCL2 Blockade. Cancer Discovery, 2019, 9, 831-833.	9.4	13
42	The Transcription Factor Bhlhe40 Programs Mitochondrial Regulation of Resident CD8+ T Cell Fitness and Functionality. Immunity, 2019, 51, 491-507.e7.	14.3	148
43	Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8 ⁺ T cells. Science Immunology, 2019, 4, .	11.9	95
44	Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy. Blood, 2019, 134, 44-58.	1.4	118
45	Oligodeoxynucleotides ODN 2006 and M362 Exert Potent Adjuvant Effect through TLR-9/-6 Synergy to Exaggerate Mammaglobin-A Peptide Specific Cytotoxic CD8+T Lymphocyte Responses against Breast Cancer Cells. Cancers, 2019, 11, 672.	3.7	12
46	ERα Signaling Increased IL-17A Production in Th17 Cells by Upregulating IL-23R Expression, Mitochondrial Respiration, and Proliferation. Frontiers in Immunology, 2019, 10, 2740.	4.8	45
47	Computational Immune Monitoring Reveals Abnormal Double-Negative T Cells Present across Human Tumor Types. Cancer Immunology Research, 2019, 7, 86-99.	3.4	27
48	Antigen receptor control of methionine metabolism in T cells. ELife, 2019, 8, .	6.0	132
49	Linking Microenvironmental Signals to Metabolic Switches and Drug Responses in Chronic Lymphocytic Leukemia. Blood, 2019, 134, 479-479.	1.4	1
50	Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nature Medicine, 2018, 24, 617-627.	30.7	117
51	Asymmetric PI3K Activity in Lymphocytes Organized by a PI3K-Mediated Polarity Pathway. Cell Reports, 2018, 22, 860-868.	6.4	31
52	Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nature Medicine, 2018, 24, 194-202.	30.7	303
53	Metabolic Barriers to T Cell Function in Tumors. Journal of Immunology, 2018, 200, 400-407.	0.8	144
54	Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature, 2018, 563, 714-718.	27.8	220

#	Article	IF	CITATIONS
55	Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 2018, 175, 1780-1795.e19.	28.9	445
56	Mutant KRAS Exosomes Alter the Metabolic StateÂofÂRecipient ColonicÂEpithelial Cells. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 627-629.e6.	4.5	27
57	The BET Inhibitor INCB054329 Primes AML Cells for Venetoclax-Induced Apoptosis. Blood, 2018, 132, 4074-4074.	1.4	0
58	T Cell Metabolism and Memory. Blood, 2018, 132, SCI-6-SCI-6.	1.4	0
59	Metabolic Alterations Contribute to Enhanced Inflammatory Cytokine Production in Irgm1-deficient Macrophages. Journal of Biological Chemistry, 2017, 292, 4651-4662.	3.4	22
60	Biochemical Underpinnings of Immune Cell Metabolic Phenotypes. Immunity, 2017, 46, 703-713.	14.3	107
61	Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine and Growth Factor Reviews, 2017, 35, 7-14.	7.2	101
62	Fine tuning of immunometabolism for the treatment of rheumatic diseases. Nature Reviews Rheumatology, 2017, 13, 313-320.	8.0	58
63	MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metabolism, 2017, 26, 633-647.e7.	16.2	449
64	A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product. Cell Metabolism, 2017, 26, 648-659.e8.	16.2	154
65	Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metabolism, 2017, 26, 49-70.	16.2	268
66	Editorial overview: Metabolism of T cells: integrating nutrients, signals, and cell fate. Current Opinion in Immunology, 2017, 46, viii-xi.	5.5	12
67	Cardiosphere-Derived Cells DemonstrateÂMetabolic Flexibility ThatÂlsÂInfluenced by Adhesion Status. JACC Basic To Translational Science, 2017, 2, 543-560.	4.1	11
68	Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight, 2017, 2, .	5.0	257
69	Anabolism-Associated Mitochondrial Stasis Driving Lymphocyte Differentiation over Self-Renewal. Cell Reports, 2016, 17, 3142-3152.	6.4	90
70	AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to Control T-ALL Cell Stress and Survival. Cell Metabolism, 2016, 23, 649-662.	16.2	195
71	Nutrients and the microenvironment to feed a T cell army. Seminars in Immunology, 2016, 28, 505-513.	5.6	57
72	Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nature Immunology, 2016, 17, 1459-1466.	14.5	402

#	Article	IF	CITATIONS
73	Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes. Journal of Immunological Methods, 2016, 438, 51-58.	1.4	49
74	Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia. Journal of Immunology, 2016, 197, 2532-2540.	0.8	110
75	mTORC1 and mTORC2 Kinase Signaling and Glucose Metabolism Drive Follicular Helper T Cell Differentiation. Immunity, 2016, 45, 540-554.	14.3	283
76	Metabolic Signaling Drives IFN-Î ³ . Cell Metabolism, 2016, 24, 651-652.	16.2	24
77	Metabolic stress is a barrier to Epstein–Barr virus-mediated B-cell immortalization. Proceedings of the United States of America, 2016, 113, E782-90.	7.1	94
78	lgG-Immune Complexes Promote B Cell Memory by Inducing BAFF. Journal of Immunology, 2016, 196, 196-206.	0.8	23
79	AIF Is "Always In Fashion―for T Cells. Immunity, 2016, 44, 11-13.	14.3	7
80	Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. Developmental Cell, 2016, 36, 540-549.	7.0	479
81	Recipient-Derived BAFF and Alloantigen Synergistically Activate B Cells in Murine Chronic Gvhd. Blood, 2016, 128, 498-498.	1.4	4
82	Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. Journal of Clinical Investigation, 2015, 125, 194-207.	8.2	562
83	PKCs Sweeten Cell Metabolism by Phosphorylation of Glut1. Molecular Cell, 2015, 58, 711-712.	9.7	13
84	Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nature Immunology, 2015, 16, 188-196.	14.5	347
85	HIF-1 Alpha Regulates the Response of Primary Sarcomas to Radiation Therapy through a Cell Autonomous Mechanism. Radiation Research, 2015, 183, 594.	1.5	41
86	A Spontaneous Deletion within the Desmoglein 3 Extracellular Domain of Mice Results in Hypomorphic Protein Expression, Immunodeficiency, and a Wasting Disease Phenotype. American Journal of Pathology, 2015, 185, 617-630.	3.8	14
87	T cell metabolic fitness in antitumor immunity. Trends in Immunology, 2015, 36, 257-264.	6.8	237
88	Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 2015, 35, S129-S150.	9.6	225
89	Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell, 2015, 162, 1217-1228.	28.9	1,044
90	MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. Cell Metabolism, 2015, 22, 1009-1019.	16.2	217

#	Article	IF	CITATIONS
91	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220
92	HIF1α and HIF2α Exert Distinct Nutrient Preferences in Renal Cells. PLoS ONE, 2014, 9, e98705.	2.5	13
93	Metabolic Reprogramming towards Aerobic Glycolysis Correlates with Greater Proliferative Ability and Resistance to Metabolic Inhibition in CD8 versus CD4 T Cells. PLoS ONE, 2014, 9, e104104.	2.5	122
94	Glycolysis-dependent histone deacetylase 4 degradation regulates inflammatory cytokine production. Molecular Biology of the Cell, 2014, 25, 3300-3307.	2.1	42
95	Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Science Signaling, 2014, 7, ra121.	3.6	163
96	Leptin Metabolically Licenses T Cells for Activation To Link Nutrition and Immunity. Journal of Immunology, 2014, 192, 136-144.	0.8	207
97	The Glucose Transporter Glut1 Is Selectively Essential for CD4ÂT Cell Activation and Effector Function. Cell Metabolism, 2014, 20, 61-72.	16.2	876
98	Acute and Chronic Lymphocytic Leukemia Induces Exhaustion and Suppresses Metabolic Reprogramming in T Cell Activation. Blood, 2014, 124, 4121-4121.	1.4	0
99	Metabolism and autophagy in the immune system: immunometabolism comes of age. Immunological Reviews, 2012, 249, 5-13.	6.0	54
100	Metabolic pathways in T cell fate and function. Trends in Immunology, 2012, 33, 168-173.	6.8	356
101	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
102	Akt and mTOR Pathways Differentially Regulate the Development of Natural and Inducible IL-17-Producing CD4+ T Cells. Blood, 2012, 120, 838-838.	1.4	0
103	The Metabolic Signature of CLL: Enhanced Glucose Metabolism in A Subset of High-Risk CLL Patients. Blood, 2012, 120, 1785-1785.	1.4	0
104	Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets. Journal of Immunology, 2011, 186, 3299-3303.	0.8	1,645
105	T Cell Myc-tabolism. Immunity, 2011, 35, 845-846.	14.3	20
106	Cell metabolism: An essential link between cell growth and apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 645-654.	4.1	133
107	The Liver Kinase B1 Is a Central Regulator of T Cell Development, Activation, and Metabolism. Journal of Immunology, 2011, 187, 4187-4198.	0.8	202
108	IL-7 Is Essential for Homeostatic Control of T Cell Metabolism In Vivo. Journal of Immunology, 2010, 184, 3461-3469.	0.8	135

#	Article	IF	CITATIONS
109	A Glucose-to-Gene Link. Science, 2009, 324, 1021-1022.	12.6	51
110	Glucose Uptake Is Limiting in T Cell Activation and Requires CD28-Mediated Akt-Dependent and Independent Pathways. Journal of Immunology, 2008, 180, 4476-4486.	0.8	675
111	IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood, 2008, 111, 2101-2111.	1.4	336
112	Filling a GAP(DH) in Caspase-Independent Cell Death. Cell, 2007, 129, 861-863.	28.9	9
113	B-cell homeostasis: digital survival or analog growth?. Immunological Reviews, 2004, 197, 116-128.	6.0	14
114	The CD28 Signaling Pathway Regulates Glucose Metabolism. Immunity, 2002, 16, 769-777.	14.3	1,201