László G Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4360294/publications.pdf

Version: 2024-02-01

136950 79698 7,401 82 32 73 citations h-index g-index papers 100 100 100 7837 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiology and Molecular Biology Reviews, 2022, 86, e0001921.	6.6	13
2	Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. New Phytologist, 2022, 233, 1383-1400.	7.3	19
3	Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroomâ€forming fungi. New Phytologist, 2022, 233, 2294-2309.	7.3	21
4	Reappraisal of the Genus Exsudoporus (Boletaceae) Worldwide Based on Multi-Gene Phylogeny, Morphology and Biogeography, and Insights on Amoenoboletus. Journal of Fungi (Basel, Switzerland), 2022, 8, 101.	3.5	5
5	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
6	Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom-forming fungi (Agaricomycetes). ELife, 2022, 11 , .	6.0	18
7	Assessment of selective logging impacts using UAV, Landsat, and Sentinel data in the Brazilian Amazon rainforest. Journal of Applied Remote Sensing, 2022, 16, .	1.3	O
8	Nitrogen pulses increase fungal pathogens in Amazonian lowland tropical rain forests. Journal of Ecology, 2022, 110, 1775-1789.	4.0	1
9	Radiation of mushroom-forming fungi correlates with novel modes of protecting sexual fruiting bodies. Fungal Biology, 2022, 126, 556-565.	2.5	5
10	Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environmental Microbiology, 2021, 23, 5716-5732.	3.8	44
11	A common soil temperature threshold for the upper limit of alpine grasslands in European mountains. Alpine Botany, 2021, 131, 41-52.	2.4	13
12	Mycology: Rediscovery of a lost model fungus highlights the origin of mycorrhizal symbioses. Current Biology, 2021, 31, R342-R344.	3.9	1
13	Evolution of opposing regulatory interactions underlies the emergence of eukaryotic cell cycle checkpoints. Scientific Reports, 2021, 11, 11122.	3.3	1
14	Hallmarks of Basidiomycete Soft- and White-Rot in Wood-Decay -Omics Data of Two Armillaria Species. Microorganisms, 2021, 9, 149.	3.6	23
15	Type studies and fourteen new North American species of Cortinarius section Anomali reveal high continental species diversity. Mycological Progress, 2021, 20, 1399-1439.	1.4	5
16	Model Choice, Missing Data, and Taxon Sampling Impact Phylogenomic Inference of Deep Basidiomycota Relationships. Systematic Biology, 2020, 69, 17-37.	5.6	34
17	Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis. PLoS ONE, 2020, 15, e0239890.	2.5	20
18	Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11, 5125.	12.8	258

#	Article	IF	CITATIONS
19	Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. Fungal Biology Reviews, 2020, 34, 151-169.	4.7	25
20	Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences. Frontiers in Forests and Global Change, 2020, 3, .	2.3	20
21	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
22	Unmatched Level of Molecular Convergence among Deeply Divergent Complex Multicellular Fungi. Molecular Biology and Evolution, 2020, 37, 2228-2240.	8.9	23
23	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	5.8	62
24	Novel phylogenetic methods are needed for understanding gene function in the era of mega-scale genome sequencing. Nucleic Acids Research, 2020, 48, 2209-2219.	14.5	32
25	FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 2020, 105, 1-16.	12.3	387
26	Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32528-32534.	7.1	65
27	<i>Mycena</i> genomes resolve the evolution of fungal bioluminescence. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31267-31277.	7.1	30
28	Title is missing!. , 2020, 15, e0239890.		0
29	Title is missing!. , 2020, 15, e0239890.		0
30	Title is missing!. , 2020, 15, e0239890.		0
31	Title is missing!. , 2020, 15, e0239890.		0
32	Title is missing!. , 2020, 15, e0239890.		0
33	Title is missing!. , 2020, 15, e0239890.		0
34	Title is missing!. , 2020, 15, e0239890.		0
35	Title is missing!. , 2020, 15, e0239890.		0
36	Comparative genomics reveals unique woodâ€decay strategies and fruiting body development in the Schizophyllaceae. New Phytologist, 2019, 224, 902-915.	7.3	53

#	Article	IF	CITATIONS
37	Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nature Communications, 2019, 10, 4080.	12.8	80
38	Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7409-7418.	7.1	115
39	Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology and Evolution, 2019, 3, 668-678.	7.8	187
40	Notes, outline and divergence times of Basidiomycota. Fungal Diversity, 2019, 99, 105-367.	12.3	256
41	Complex multicellularity in fungi: evolutionary convergence, single origin, or both?. Biological Reviews, 2018, 93, 1778-1794.	10.4	92
42	Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Scientific Reports, 2018, 8, 6321.	3.3	138
43	Armillaria. Current Biology, 2018, 28, R297-R298.	3.9	29
44	Genomics and Development of <i>Lentinus tigrinus </i> : A White-Rot Wood-Decaying Mushroom with Dimorphic Fruiting Bodies. Genome Biology and Evolution, 2018, 10, 3250-3261.	2.5	53
45	Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nature Ecology and Evolution, 2018, 2, 1956-1965.	7.8	95
46	Fungal Phylogenomics. Methods in Molecular Biology, 2018, 1775, 251-266.	0.9	4
47	Many roads to convergence. Science, 2018, 361, 125-126.	12.6	10
48	Evolution: Complex Multicellular Life with 5,500 Genes. Current Biology, 2017, 27, R609-R612.	3.9	29
49	Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nature Ecology and Evolution, 2017, 1, 1931-1941.	7.8	145
50	The genus Parasola: phylogeny and the description of three new species. Mycologia, 2017, 109, 1-10.	1.9	8
51	Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. Microbiology Spectrum, 2017, 5, .	3.0	31
52	Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution. Molecular Biology and Evolution, 2017, 34, 35-44.	8.9	65
53	Fungal Phylogeny in the Age of Genomics: Insights Into Phylogenetic Inference From Genome-Scale Datasets. Advances in Genetics, 2017, 100, 49-72.	1.8	16
54	Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. , 2017, , 35-56.		10

#	Article	IF	CITATIONS
55	NFAP2, a novel cysteine-rich anti-yeast protein from Neosartorya fischeri NRRL 181: isolation and characterization. AMB Express, 2016, 6, 75.	3.0	43
56	Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities. Molecular Biology and Evolution, 2016, 33, 959-970.	8.9	213
57	<i>Psathyloma</i> , a new genus in Hymenogastraceae described from New Zealand. Mycologia, 2016, 108, 397-404.	1.9	9
58	Molecular identification and antifungal susceptibility of <i>Curvularia australiensis, C.Âhawaiiensis</i> and <i>C.Âspicifera</i> isolated from human eye infections. Mycoses, 2015, 58, 603-609.	4.0	14
59	Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. Fungal Genetics and Biology, 2015, 76, 78-92.	2.1	141
60	Phylogenetic relationships and morphological evolution in <i>Lentinus</i> , <i>Polyporellus</i> and <i>Neofavolus</i> , emphasizing southeastern Asian taxa. Mycologia, 2015, 107, 460-474.	1.9	31
61	Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 2015, 47, 410-415.	21.4	870
62	Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nature Communications, 2014, 5, 4471.	12.8	133
63	Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9923-9928.	7.1	595
64	Morphological characterization of clades of the Psathyrellaceae (Agaricales) inferred from a multigene phylogeny. Mycological Progress, 2013, 12, 505-517.	1.4	31
65	Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia, 2013, 105, 1428-1444.	1.9	134
66	Phylogenetic analyses of <i>Coprinopsis</i> sections <i>Lanatuli</i> and <i>Atramentarii</i> identify multiple species within morphologically defined taxa. Mycologia, 2013, 105, 112-124.	1.9	17
67	Iteratively Refined Guide Trees Help Improving Alignment and Phylogenetic Inference in the Mushroom Family Bolbitiaceae. PLoS ONE, 2013, 8, e56143.	2.5	34
68	The Evolution of Defense Mechanisms Correlate with the Explosive Diversification of Autodigesting Coprinellus Mushrooms (Agaricales, Fungi). Systematic Biology, 2012, 61, 595-607.	5.6	29
69	Genome sequence of the button mushroom <i>Agaricus bisporus</i> reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17501-17506.	7.1	359
70	No Indication of Strict Host Associations in a Widespread Mycoparasite: Grapevine Powdery Mildew (<i>Erysiphe necator</i>) Is Attacked by Phylogenetically Distant <i>Ampelomyces</i>) Strains in the Field. Phytopathology, 2012, 102, 707-716.	2.2	28
71	Homology modeling and phylogenetic relationships of catalases of an opportunistic pathogen Rhizopus oryzae. Life Sciences, 2012, 91, 115-126.	4.3	2
72	Phylogeny and species delimitation in the genus <i>Coprinellus</i> with special emphasis on the haired species. Mycologia, 2012, 104, 254-275.	1.9	25

#	Article	IF	CITATIONS
73	The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science, 2012, 336, 1715-1719.	12.6	1,424
74	Re-Mind the Gap! Insertion – Deletion Data Reveal Neglected Phylogenetic Potential of the Nuclear Ribosomal Internal Transcribed Spacer (ITS) of Fungi. PLoS ONE, 2012, 7, e49794.	2.5	97
75	Understanding the Evolutionary Processes of Fungal Fruiting Bodies: Correlated Evolution and Divergence Times in the Psathyrellaceae. Systematic Biology, 2011, 60, 303-317.	5.6	56
76	Where is the unseen fungal diversity hidden? A study of <i>Mortierella</i> reveals a large contribution of reference collections to the identification of fungal environmental sequences. New Phytologist, 2011, 191, 789-794.	7.3	79
77	Coprinellus radicellus, a new species with northern distribution. Mycological Progress, 2011, 10, 363-371.	1.4	10
78	Data Partitions, Bayesian Analysis and Phylogeny of the Zygomycetous Fungal Family Mortierellaceae, Inferred from Nuclear Ribosomal DNA Sequences. PLoS ONE, 2011, 6, e27507.	2.5	37
79	Type studies and nomenclatural revisions in <1>Parasola (Psathyrellaceae) and related taxa. Mycotaxon, 2010, 112, 103-141.	0.3	19
80	A new \hat{l}^2 -glucosidase gene from the zygomycete fungus Rhizomucor miehei. Antonie Van Leeuwenhoek, 2010, 97, 1-10.	1.7	14
81	The evolution of autodigestion in the mushroom family Psathyrellaceae (Agaricales) inferred from Maximum Likelihood and Bayesian methods. Molecular Phylogenetics and Evolution, 2010, 57, 1037-1048.	2.7	27
82	Molecular identification of <i>Trichoderma </i> species associated with <i>Pleurotus ostreatus </i> and natural substrates of the oyster mushroom. FEMS Microbiology Letters, 2009, 300, 58-67.	1.8	42