
Enrico Cappelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/435997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Involvement of XRCC1 and DNA Ligase III Gene Products in DNA Base Excision Repair. Journal of Biological Chemistry, 1997, 272, 23970-23975.	3.4	284
2	Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. Journal of Clinical Investigation, 2003, 112, 1751-1761.	8.2	223
3	Comparative Analysis of DNA Repair in Stem and Nonstem Glioma Cell Cultures. Molecular Cancer Research, 2009, 7, 383-392.	3.4	176
4	Histone H2AX and Fanconi anemia FANCD2 function in the same pathway to maintain chromosome stability. EMBO Journal, 2007, 26, 1340-1351.	7.8	115
5	Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nature Communications, 2014, 5, 4330.	12.8	102
6	Mitochondrial respiratory chain Complex I defects in Fanconi anemia complementation group A. Biochimie, 2013, 95, 1828-1837.	2.6	55
7	Comparative repair of the endogenous lesions 8-oxo-7,8-dihydroguanine (8-oxoG), uracil and abasic site by mammalian cell extracts: 8-oxoG is poorly repaired by human cell extracts. Carcinogenesis, 2000, 21, 1135-1141.	2.8	51
8	Defects in mitochondrial energetic function compels Fanconi Anaemia cells to glycolytic metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1214-1221.	3.8	46
9	Molecular analysis of Fanconi anemia: the experience of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Onco-Hematology. Haematologica, 2014, 99, 1022-1031.	3.5	44
10	Immunological profile of Fanconi anemia: A multicentric retrospective analysis of 61 patients. American Journal of Hematology, 2013, 88, 472-476.	4.1	43
11	Mitochondrial respiratory complex I defects in Fanconi anemia. Trends in Molecular Medicine, 2013, 19, 513-514.	6.7	39
12	Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome. Scientific Reports, 2016, 6, 25441.	3.3	39
13	p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes. Blood, 2012, 119, 1992-2002.	1.4	35
14	Characterization of Glioma Stem Cells Through Multiple Stem Cell Markers and Their Specific Sensitization to Doubleâ€Strand Breakâ€Inducing Agents by Pharmacological Inhibition of Ataxia Telangiectasia Mutated Protein. Brain Pathology, 2012, 22, 677-688.	4.1	33
15	Somatic, hematologic phenotype, longâ€term outcome, and effect of hematopoietic stem cell transplantation. An analysis of 97 Fanconi anemia patients from the Italian national database on behalf of the Marrow Failure Study Group of the AIEOP (Italian Association of Pediatric) Tj ETQq1 1 0.784314 rgBT /Ove	erlock 10 T	f 50 172 Td
16	FASâ€mediated apoptosis impairment in patients with ALPS/ALPSâ€like phenotype carrying variants on <i>CASP10</i> gene. British Journal of Haematology, 2019, 187, 502-508.	2.5	29
17	Hypomorphic FANCA mutations correlate with mild mitochondrial and clinical phenotype in Fanconi anemia. Haematologica, 2018, 103, 417-426.	3.5	26
18	Multiple target molecular monitoring of bone marrow and peripheral blood samples from patients with localized neuroblastoma and healthy donors. Pediatric Blood and Cancer, 2012, 58, 43-49.	1.5	25

ENRICO CAPPELLI

#	Article	IF	CITATIONS
19	Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells. Journal of Cellular Physiology, 2018, 233, 1736-1751.	4.1	25
20	In Vitro Base Excision Repair Assay Using Mammalian Cell Extracts. , 1999, 113, 301-315.		20
21	Treatment of FANCA Cells with Resveratrol and N-Acetylcysteine: A Comparative Study. PLoS ONE, 2014, 9, e104857.	2.5	19
22	Sirolimus as a rescue therapy in children with immune thrombocytopenia refractory to mycophenolate mofetil. American Journal of Hematology, 2018, 93, E175-E177.	4.1	18
23	In Vitro Base Excision Repair Assay Using Mammalian Cell Extracts. Methods in Molecular Biology, 2006, 314, 377-396.	0.9	17
24	Changes in vimentin, lamin A/C and mitofilin induceÂaberrant cell organization in fibroblasts from Fanconi anemia complementation group A (FA-A) patients. Biochimie, 2013, 95, 1838-1847.	2.6	17
25	The passage from bone marrow niche to bloodstream triggers the metabolic impairment in Fanconi Anemia mononuclear cells. Redox Biology, 2020, 36, 101618.	9.0	17
26	Analysis of repair of abasic sites in early onset breast cancer patients. International Journal of Cancer, 2000, 85, 21-26.	5.1	16
27	Unusual splice site mutations disrupt FANCA exon 8 definition. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1052-1058.	3.8	16
28	Characterization of C2C12 cells in simulated microgravity: Possible use for myoblast regeneration. Journal of Cellular Physiology, 2020, 235, 3508-3518.	4.1	16
29	Dysregulated Ca2+ Homeostasis in Fanconi anemia cells. Scientific Reports, 2015, 5, 8088.	3.3	15
30	p38 mitogen-activated protein kinase inhibition enhances inÂvitro erythropoiesis of Fanconi anemia, complementation group A–deficient boneÂmarrow cells. Experimental Hematology, 2015, 43, 295-299.	0.4	12
31	Fanconi anemia: from DNA repair to metabolism. European Journal of Human Genetics, 2018, 26, 475-476.	2.8	12
32	Altered lipid metabolism could drive the bone marrow failure in fanconi anaemia. British Journal of Haematology, 2019, 184, 693-696.	2.5	12
33	Genetic screening of children with marrow failure. The role of primary Immunodeficiencies. American Journal of Hematology, 2021, 96, 1077-1086.	4.1	12
34	RAG deficiency with ALPS features successfully treated with TCRαβ/CD19 cell depleted haploidentical stem cell transplant. Clinical Immunology, 2018, 187, 102-103.	3.2	12
35	Drosophila S3 ribosomal protein accelerates repair of 8-oxoguanine performed by human and mouse cell extracts. Environmental and Molecular Mutagenesis, 2003, 42, 50-58.	2.2	10
36	Two further patients with Warsaw breakage syndrome. Is a mild phenotype possible?. Molecular Genetics & Genomic Medicine, 2019, 7, e639.	1.2	10

ENRICO CAPPELLI

#	Article	IF	CITATIONS
37	Identification of point mutations and large intragenic deletions in Fanconi anemia using nextâ€generation sequencing technology. Molecular Genetics & Genomic Medicine, 2015, 3, 500-512.	1.2	9
38	Efficient DNA base excision repair in ataxia telangiectasia cells. FEBS Journal, 2000, 267, 6883-6887.	0.2	8
39	Unusual Late-onset Enteropathy in a Patient With Lipopolysaccharide-responsive Beige-like Anchor Protein Deficiency. Journal of Pediatric Hematology/Oncology, 2020, 42, e768-e771.	0.6	8
40	A Multidrug Approach to Modulate the Mitochondrial Metabolism Impairment and Relative Oxidative Stress in Fanconi Anemia Complementation Group A. Metabolites, 2022, 12, 6.	2.9	8
41	Efficient Repair of 8-Oxo-7,8-dihydrodeoxyguanosine in Human and Hamster Xeroderma Pigmentosum D Cellsâ€. Biochemistry, 2000, 39, 10408-10412.	2.5	7
42	Underlying Inborn Errors of Immunity in Patients With Evans Syndrome and Multilineage Cytopenias: A Single-Centre Analysis. Frontiers in Immunology, 2022, 13, .	4.8	7
43	Repair of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea-induced damage by mammalian cell extracts. Carcinogenesis, 1995, 16, 2267-2270.	2.8	6
44	A Global MicroRNA Profile in Fanconi Anemia: A Pilot Study. Metabolic Syndrome and Related Disorders, 2019, 17, 53-59.	1.3	6
45	Fanconi Anemia Patients Are More Susceptible to Infection with Tumor Virus SV40. PLoS ONE, 2013, 8, e79683.	2.5	6
46	Comparative repair of the endogenous lesions 8-oxo-7,8-dihydroguanine (8-oxoG), uracil and abasic site by mammalian cell extracts: 8-oxoG is poorly repaired by human cell extracts. Carcinogenesis, 2000, 21, 1135-1141.	2.8	5
47	Clinical aspects of Fanconi anemia individuals with the same mutation of <i>FANCF</i> identified by next generation sequencing. Birth Defects Research Part A: Clinical and Molecular Teratology, 2015, 103, 1003-1010.	1.6	5
48	Inhibition of Metalloproteinase Activity in FANCA Is Linked to Altered Oxygen Metabolism. Journal of Cellular Physiology, 2015, 230, 603-609.	4.1	5
49	Impaired immune response to Candida albicans in cells from Fanconi anemia patients. Cytokine, 2015, 73, 203-207.	3.2	5
50	Aerobic metabolism dysfunction as one of the links between Fanconi anemia-deficient pathway and the aggressive cell invasion in head and neck cancer cells. Oral Oncology, 2018, 87, 210-211.	1.5	5
51	Thrombotic thrombocytopenic purpura and defective apoptosis due to CASP8/10 mutations: the role of mycophenolate mofetil. Blood Advances, 2019, 3, 3432-3435.	5.2	5
52	In Vitro Base Excision Repair Assay Using Mammalian Cell Extracts. , 1999, , 301-315.		5
53	Defective resolution of pH2AX foci and enhanced DNA breakage in ionizing radiationâ€ŧreated cockayne syndrome B cells. IUBMB Life, 2011, 63, 272-276.	3.4	4
54	The DNA helicases acting in nucleotide excision repair, XPD, CSB and XPB, are not required for PCNA-dependent repair of abasic sites. FEBS Journal, 1999, 259, 325-330.	0.2	3

ENRICO CAPPELLI

#	Article	IF	CITATIONS
55	Delayed formation of FancD2 foci in glioma stem cells treated with ionizing radiation. Journal of Cancer Research and Clinical Oncology, 2012, 138, 897-899.	2.5	3
56	Why is an energy metabolic defect the common outcome in BMFS?. Cell Cycle, 2016, 15, 2571-2575.	2.6	3
57	Defective FAS-Mediated Apoptosis and Immune Dysregulation in Gaucher Disease. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3535-3542.	3.8	3
58	Effect of S. cerevisiae APN1 protein on mammalian DNA base excision repair. Anticancer Research, 2002, 22, 2797-804.	1.1	3
59	Repair of 8 oxoguanine in mammalian cells expressing the Drosophila S3 ribosomal/repair protein. Teratogenesis, Carcinogenesis, and Mutagenesis, 2003, 23, 113-121.	0.8	1
60	Genomic integrity and mitochondrial metabolism defects in Warsaw syndrome cells: a comparison with Fanconi anemia. Journal of Cellular Physiology, 2021, 236, 5664-5675.	4.1	1
61	Long-Term Outcome After Matched Allogeneic Hematopoietic Stem Cell Transplantation for Fanconi Anemia On Behalf of the FA Committee of the Severe Aplastic Anemia Working Party (SAA WP) and the Pediatric Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Blood, 2011, 118, 325-325.	1.4	0
62	Immunological Prophile of FA. A Multicentric retrospective Analysis of 61 Patients. Blood, 2011, 118, 1347-1347.	1.4	0
63	Kinase Inhibitors Reduce TNF-Alpha Over-Production in Monocytes From Fanconi Anemia Group A Patients. Blood, 2011, 118, 2409-2409.	1.4	0
64	Shwachman-Diamond Syndrome: Energetic Stress, Calcium Homeostasis and mTOR Pathway. Blood, 2015, 126, 2410-2410.	1.4	0
65	Genetic Screening of Patients with Evans Syndrome: A Single Centre Analysis. Blood, 2021, 138, 4198-4198	1.4	Ο