Manish K Pandey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4359667/publications.pdf Version: 2024-02-01

	57758	62596
7,839	44	80
citations	h-index	g-index
153	153	4521
docs citations	times ranked	citing authors
	citations 153	7,839 44 citations h-index 153 153

#	Article	IF	CITATIONS
1	Chromosome-length genome assemblies of six legume species provide insights into genome organization, evolution, and agronomic traits for crop improvement. Journal of Advanced Research, 2022, 42, 315-329.	9.5	20
2	Arsenic and cadmium induced macronutrient deficiencies trigger contrasting gene expression changes in rice. Environmental Pollution, 2022, 300, 118923.	7.5	8
3	Genetic Enhancement of Groundnut: Current Status and Future Prospects. , 2022, , 63-110.		2
4	Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut. Journal of Advanced Research, 2022, 42, 237-248.	9.5	10
5	Discovery of Major Quantitative Trait Loci and Candidate Genes for Fresh Seed Dormancy in Groundnut. Agronomy, 2022, 12, 404.	3.0	12
6	Genetic mapping of tolerance to iron deficiency chlorosis in peanut (Arachis hypogaea L.). Euphytica, 2022, 218, 1.	1.2	2
7	Comprehensive evaluation of Chinese peanut mini-mini core collection and QTL mapping for aflatoxin resistance. BMC Plant Biology, 2022, 22, 207.	3.6	12
8	Genome-Wide Identification and Expression of FAR1 Gene Family Provide Insight Into Pod Development in Peanut (Arachis hypogaea). Frontiers in Plant Science, 2022, 13, 893278.	3.6	8
9	Population Genomics of Peanut. Population Genomics, 2021, , 1.	0.5	3
10	Groundnut Kernel Transcriptome. , 2021, , 528-543.		0
11	Metabolomics Intervention Towards Better Understanding of Plant Traits. Cells, 2021, 10, 346.	4.1	35
12	Thiourea and hydrogen peroxide priming improved K+ retention and source-sink relationship for mitigating salt stress in rice. Scientific Reports, 2021, 11, 3000.	3.3	10
13	Comparative Transcriptome Analysis Identified Candidate Genes for Late Leaf Spot Resistance and Cause of Defoliation in Groundnut. International Journal of Molecular Sciences, 2021, 22, 4491.	4.1	14
14	Chemical intervention for enhancing growth and reducing grain arsenic accumulation in rice. Environmental Pollution, 2021, 276, 116719.	7.5	22
15	Global Transcriptome Profiling Identified Transcription Factors, Biological Process, and Associated Pathways for Pre-Harvest Aflatoxin Contamination in Groundnut. Journal of Fungi (Basel,) Tj ETQq1 1 0.784314	rgB J.\$ Over	lock010 Tf 50
16	De novo full length transcriptome analysis of Arachis glabrata provides insights into gene expression dynamics in response to biotic and abiotic stresses. Genomics, 2021, 113, 1579-1588.	2.9	11
17	Dissection of the Genetic Basis of Yield-Related Traits in the Chinese Peanut Mini-Core Collection Through Genome-Wide Association Studies. Frontiers in Plant Science, 2021, 12, 637284.	3.6	18
18	Single Seed-Based High-Throughput Genotyping and Rapid Generation Advancement for Accelerated Groundnut Genetics and Breeding Research. Agronomy, 2021, 11, 1226.	3.0	11

#	Article	IF	CITATIONS
19	Enhancing oleic acid content in two commercially released peanut varieties through markerâ€assisted backcross breeding. Crop Science, 2021, 61, 2435-2443.	1.8	6
20	Genetic mapping for grain quality and yield-attributed traits in Basmati rice using SSR-based genetic map. Journal of Biosciences, 2021, 46, 1.	1.1	5
21	Key Regulators of Sucrose Metabolism Identified through Comprehensive Comparative Transcriptome Analysis in Peanuts. International Journal of Molecular Sciences, 2021, 22, 7266.	4.1	14
22	Genetic diversity and distinctness based on morphological and SSR markers in peanut. Agronomy Journal, 2021, 113, 4648-4660.	1.8	11
23	Genotyping-by-Sequencing Based Genetic Mapping Identified Major and Consistent Genomic Regions for Productivity and Quality Traits in Peanut. Frontiers in Plant Science, 2021, 12, 668020.	3.6	19
24	Nested Association Mapping (NAM) Populations: Present Status and Future Prospects in the Genomics Era. Critical Reviews in Plant Sciences, 2021, 40, 49-67.	5.7	6
25	Improved Genetic Map Identified Major QTLs for Drought Tolerance- and Iron Deficiency Tolerance-Related Traits in Groundnut. Genes, 2021, 12, 37.	2.4	28
26	Chromatin spatial organization of wild type and mutant peanuts reveals high-resolution genomic architecture and interaction alterations. Genome Biology, 2021, 22, 315.	8.8	13
27	Peanut Seed Coat Acts as a Physical and Biochemical Barrier against Aspergillus flavus Infection. Journal of Fungi (Basel, Switzerland), 2021, 7, 1000.	3.5	8
28	Genomeâ€wide expression quantitative trait locus analysis in a recombinant inbred line population for trait dissection in peanut. Plant Biotechnology Journal, 2020, 18, 779-790.	8.3	14
29	Wholeâ€genome resequencingâ€based <scp>QTL</scp> â€seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. Plant Biotechnology Journal, 2020, 18, 992-1003.	8.3	60
30	Improvement of three popular Indian groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker-assisted backcrossing. Crop Journal, 2020, 8, 1-15.	5.2	47
31	Nestedâ€association mapping (NAM)â€based genetic dissection uncovers candidate genes for seed and pod weights in peanut (<i>Arachis hypogaea</i>). Plant Biotechnology Journal, 2020, 18, 1457-1471.	8.3	65
32	Two New <i>Aspergillus flavus</i> Reference Genomes Reveal a Large Insertion Potentially Contributing to Isolate Stress Tolerance and Aflatoxin Production. G3: Genes, Genomes, Genetics, 2020, 10, 3515-3531.	1.8	15
33	Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Functional and Integrative Genomics, 2020, 20, 739-761.	3.5	37
34	Transcriptional reprogramming and enhanced photosynthesis drive inducible salt tolerance in sugarcane mutant line M4209. Journal of Experimental Botany, 2020, 71, 6159-6173.	4.8	9
35	Deployment of Genetic and Genomic Tools Toward Gaining a Better Understanding of Rice-Xanthomonasoryzae pv. oryzae Interactions for Development of Durable Bacterial Blight Resistant Rice. Frontiers in Plant Science, 2020, 11, 1152.	3.6	41
36	Genome-based trait prediction in multi- environment breeding trials in groundnut. Theoretical and Applied Genetics, 2020, 133, 3101-3117.	3.6	29

#	Article	IF	CITATIONS
37	Genome-wide identification of meiotic recombination hot spots detected by SLAF in peanut (Arachis) Tj ETQq	1 0.78431	.4 rgBT /Over
38	Transcriptome Analysis Identified Coordinated Control of Key Pathways Regulating Cellular Physiology and Metabolism upon Aspergillus flavus Infection Resulting in Reduced Aflatoxin Production in Groundnut. Journal of Fungi (Basel, Switzerland), 2020, 6, 370.	3.5	15
39	G × E interactions in QTL introgression lines of Spanish-type groundnut (Arachis hypogaea L.). Euphytica, 2020, 216, 1.	1.2	2
40	Dissection of the genetic basis of oil content in Chinese peanut cultivars through association mapping. BMC Genetics, 2020, 21, 60.	2.7	7
41	Combining High Oleic Acid Trait and Resistance to Late Leaf Spot and Rust Diseases in Groundnut (Arachis hypogaea L.). Frontiers in Genetics, 2020, 11, 514.	2.3	24
42	Advances in Crop Improvement and Delivery Research for Nutritional Quality and Health Benefits of Groundnut (Arachis hypogaea L.). Frontiers in Plant Science, 2020, 11, 29.	3.6	34
43	<i>Arachis hypogaea</i> gene expression atlas for <i>fastigiata</i> subspecies of cultivated groundnut to accelerate functional and translational genomics applications. Plant Biotechnology Journal, 2020, 18, 2187-2200.	8.3	38
44	ldentification of quantitative trait loci associated with iron deficiency chlorosis resistance in groundnut (<i>Arachis hypogaea</i>). Plant Breeding, 2020, 139, 790-803.	1.9	6
45	Identification of Two Novel Peanut Genotypes Resistant to Aflatoxin Production and Their SNP Markers Associated with Resistance. Toxins, 2020, 12, 156.	3.4	15
46	Genome-wide transcriptome and physiological analyses provide new insights into peanut drought response mechanisms. Scientific Reports, 2020, 10, 4071.	3.3	20
47	Molecular Basis of Root Nodule Symbiosis between Bradyrhizobium and â€~Crack-Entry' Legume Groundnut (Arachis hypogaea L.). Plants, 2020, 9, 276.	3.5	39
48	Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6. Theoretical and Applied Genetics, 2020, 133, 1133-1148.	3.6	14
49	Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut (Arachis hypogaea L.) and Maize (Zea mays L.). Frontiers in Microbiology, 2020, 11, 227.	3.5	39
50	Translational genomics for achieving higher genetic gains in groundnut. Theoretical and Applied Genetics, 2020, 133, 1679-1702.	3.6	58
51	Transcriptome and metabolome reveal redirection of flavonoids in a white testa peanut mutant. BMC Plant Biology, 2020, 20, 161.	3.6	28
52	Genomics, genetics and breeding of tropical legumes for better livelihoods of smallholder farmers. Plant Breeding, 2019, 138, 487-499.	1.9	28
53	An Improved Enzyme-Linked Immunosorbent Assay (ELISA) Based Protocol Using Seeds for Detection of Five Major Peanut Allergens Ara h 1, Ara h 2, Ara h 3, Ara h 6, and Ara h 8. Frontiers in Nutrition, 2019, 6, 68.	3.7	26
54	Genomic regions associated with resistance to peanut bud necrosis disease (PBND) in a recombinant inbred line (RIL) population. Plant Breeding, 2019, 138, 748-760.	1.9	5

#	Article	IF	CITATIONS
55	Peg Biology: Deciphering the Molecular Regulations Involved During Peanut Peg Development. Frontiers in Plant Science, 2019, 10, 1289.	3.6	19
56	Carbohydrate, glutathione, and polyamine metabolism are central to Aspergillus flavus oxidative stress responses over time. BMC Microbiology, 2019, 19, 209.	3.3	18
57	Mitigating Aflatoxin Contamination in Groundnut through A Combination of Genetic Resistance and Post-Harvest Management Practices. Toxins, 2019, 11, 315.	3.4	73
58	Nextâ€generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (<i>Arachis hypogaea</i> L.). Plant Biotechnology Journal, 2019, 17, 2356-2369.	8.3	41
59	Sequencing of Cultivated Peanut, Arachis hypogaea, Yields Insights into Genome Evolution and Oil Improvement. Molecular Plant, 2019, 12, 920-934.	8.3	185
60	The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 2019, 51, 865-876.	21.4	398
61	The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 2019, 51, 877-884.	21.4	439
62	Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genetics, 2019, 20, 32.	2.7	37
63	Climate-Smart Groundnuts for Achieving High Productivity and Improved Quality: Current Status, Challenges, and Opportunities. , 2019, , 133-172.		14
64	Hypoallergen Peanut Lines Identified Through Large-Scale Phenotyping of Global Diversity Panel: Providing Hope Toward Addressing One of the Major Global Food Safety Concerns. Frontiers in Genetics, 2019, 10, 1177.	2.3	17
65	A recombination bin-map identified a major QTL for resistance to Tomato Spotted Wilt Virus in peanut (Arachis hypogaea). Scientific Reports, 2019, 9, 18246.	3.3	25
66	Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits. PLoS ONE, 2019, 14, e0226252.	2.5	34
67	Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant Breeding, 2019, 138, 425-444.	1.9	38
68	Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theoretical and Applied Genetics, 2019, 132, 797-816.	3.6	147
69	Genetic imprints of domestication for disease resistance, oil quality, and yield component traits in groundnut (Arachis hypogaea L.). Molecular Genetics and Genomics, 2019, 294, 365-378.	2.1	12
70	Discovery of genomic regions and candidate genes controlling shelling percentage using <scp>QTL</scp> â€seq approach in cultivated peanut (<i>Arachis hypogaea</i> L.). Plant Biotechnology Journal, 2019, 17, 1248-1260.	8.3	51
71	Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut. Theoretical and Applied Genetics, 2019, 132, 1001-1016.	3.6	42
72	Highâ€density genetic map using wholeâ€genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnology Journal, 2018, 16, 1954-1967.	8.3	90

6

#	Article	IF	CITATIONS
73	Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. Journal of Experimental Botany, 2018, 69, 3293-3312.	4.8	87
74	Proteome analysis of Aspergillus flavus isolate-specific responses to oxidative stress in relationship to aflatoxin production capability. Scientific Reports, 2018, 8, 3430.	3.3	45
75	Identification of main effect and epistatic quantitative trait loci for morphological and yield-related traits in peanut (Arachis hypogaea L.). Molecular Breeding, 2018, 38, 1.	2.1	15
76	Sequencing Analysis of Genetic Loci for Resistance for Late Leaf Spot and Rust in Peanut (Arachis) Tj ETQq0 0 0 rg	3.6 JOverlo	ock 10 Tf 50
77	Assessing variability for disease resistance and nutritional quality traits in an interspecific collection of groundnut (<i>Arachis hypogaea</i>). Plant Breeding, 2018, 137, 883-894.	1.9	7
78	Genomic and Transcriptomic Analysis Identified Gene Clusters and Candidate Genes for Oil Content in Peanut (Arachis hypogaea L.). Plant Molecular Biology Reporter, 2018, 36, 518-529.	1.8	18
79	Groundnut Entered Post-genome Sequencing Era: Opportunities and Challenges in Translating Genomic Information from Genome to Field. , 2018, , 199-209.		8
80	Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.). Euphytica, 2018, 214, 1.	1.2	38
81	Development and Evaluation of a High Density Genotyping â€~Axiom_Arachis' Array with 58 K SNPs for Accelerating Genetics and Breeding in Groundnut. Scientific Reports, 2017, 7, 40577.	3.3	144
82	Harnessing Genetic Diversity of Wild <i>Arachis</i> Species for Genetic Enhancement of Cultivated Peanut. Crop Science, 2017, 57, 1121-1131.	1.8	15
83	<scp>QTL</scp> â€seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (<i><scp>A</scp>rachis hypogaea </i> <scp>L</scp> .). Plant Biotechnology Journal, 2017, 15, 927-941.	8.3	198
84	Genome-wide SNP Genotyping Resolves Signatures of Selection and Tetrasomic Recombination in Peanut. Molecular Plant, 2017, 10, 309-322.	8.3	114
85	SSR markers associated to early leaf spot disease resistance through selective genotyping and single marker analysis in groundnut (Arachis hypogaea L.). Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.784314 r	g ₿. 74/Over	lo rs 10 Tf 50
86	Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in-vitro seed colonization. Scientific Reports, 2017, 7, 9659.	3.3	38
87	Co-localization of major quantitative trait loci for pod size and weight to a 3.7ÂcM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017, 18, 58.	2.8	54
88	Time course of physiological, biochemical, and gene expression changes under short-term salt stress in Brassica juncea L Crop Journal, 2017, 5, 219-230.	5.2	22
89	Current Status and Prospects of Genomic Selection in Legumes. , 2017, , 131-147.		7

90History and Impact of the International Peanut Genome Initiative: The Exciting Journey Toward Peanut
Whole-Genome Sequencing. Compendium of Plant Genomes, 2017, , 117-133.0.5

#	Article	IF	CITATIONS
91	The Peanut Genome: An Introduction. Compendium of Plant Genomes, 2017, , 1-6.	0.5	2
92	Future Prospects for Peanut Improvement. Compendium of Plant Genomes, 2017, , 165-169.	0.5	3
93	Classical and Molecular Approaches for Mapping of Genes and Quantitative Trait Loci in Peanut. Compendium of Plant Genomes, 2017, , 93-116.	0.5	10
94	Genetic Dissection of Novel QTLs for Resistance to Leaf Spots and Tomato Spotted Wilt Virus in Peanut (Arachis hypogaea L.). Frontiers in Plant Science, 2017, 8, 25.	3.6	54
95	Molecular Mapping of Oil Content and Fatty Acids Using Dense Genetic Maps in Groundnut (Arachis) Tj ETQq1 1	0.784314	rgBT /Overld
96	Genome-Wide Discovery of Microsatellite Markers from Diploid Progenitor Species, Arachis duranensis and A. ipaensis, and Their Application in Cultivated Peanut (A. hypogaea). Frontiers in Plant Science, 2017, 8, 1209.	3.6	58
97	Metabolomics for Plant Improvement: Status and Prospects. Frontiers in Plant Science, 2017, 8, 1302.	3.6	210
98	Genome-Wide Discovery and Deployment of Insertions and Deletions Markers Provided Greater Insights on Species, Genomes, and Sections Relationships in the Genus Arachis. Frontiers in Plant Science, 2017, 8, 2064.	3.6	24
99	Genetic Variation and Association Mapping of Seed-Related Traits in Cultivated Peanut (Arachis) Tj ETQq1 1 0.784 2105.	4314 rgBT 3.6	/Overlock 1 27
100	Recent Advances in Peanut Breeding and Genetics. , 2016, , 111-145.		4
101	Responses of Aspergillus flavus to Oxidative Stress Are Related to Fungal Development Regulator, Antioxidant Enzyme, and Secondary Metabolite Biosynthetic Gene Expression. Frontiers in Microbiology, 2016, 7, 2048.	3.5	72
102	Mapping Quantitative Trait Loci of Resistance to Tomato Spotted Wilt Virus and Leaf Spots in a Recombinant Inbred Line Population of Peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLoS ONE, 2016, 11, e0158452.	2.5	46
103	Genomic Tools in Groundnut Breeding Program: Status and Perspectives. Frontiers in Plant Science, 2016, 7, 289.	3.6	79
104	Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects. Frontiers in Plant Science, 2016, 7, 455.	3.6	180
105	Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation. Frontiers in Plant Science, 2016, 7, 1491.	3.6	39
106	Identification of two major quantitative trait locus for fresh seed dormancy using the diversity arrays technology and diversity arrays technologyâ€seq based genetic map in Spanishâ€ŧype peanuts. Plant Breeding, 2016, 135, 367-375.	1.9	31
107	Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Scientific Reports, 2016, 6, 39478.	3.3	76
108	Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production. Scientific Reports, 2016, 6, 38747.	3.3	85

#	Article	IF	CITATIONS
109	Foliar fungal diseaseâ€resistant introgression lines of groundnut (<i>Arachis hypogaea</i> L.) record higher pod and haulm yield in multilocation testing. Plant Breeding, 2016, 135, 355-366.	1.9	40
110	Draft genome of the peanut A-genome progenitor (<i>Arachis duranensis</i>) provides insights into geocarpy, oil biosynthesis, and allergens. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6785-6790.	7.1	235
111	QTL mapping for late leaf spot and rust resistance using an improved genetic map and extensive phenotypic data on a recombinant inbred line population in peanut (Arachis hypogaea L.). Euphytica, 2016, 209, 147-156.	1.2	64
112	Identification and validation of novel alleles of rice blast resistant gene Pi54, and analysis of their nucleotide diversity in landraces and wild Oryza species. Euphytica, 2016, 209, 725-737.	1.2	7
113	Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) Tj ETQq1 1 203-213.	0.784314 3.6	rgBT /Over 124
114	Genetic Mapping of QTLs Controlling Fatty Acids Provided Insights into the Genetic Control of Fatty Acid Synthesis Pathway in Peanut (Arachis hypogaea L.). PLoS ONE, 2015, 10, e0119454.	2.5	73
115	Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis) Tj ETQq1 1 0. Frontiers in Plant Science, 2015, 6, 1068.	784314 rg 3.6	gBT /Overloc 16
116	Identification of quantitative trait loci for yield and yield related traits in groundnut (Arachis) Tj ETQq0 0 0 rgBT /C	Dverlock 1 1.2	0 Jf 50 462
117	Legume Crops Phylogeny and Genetic Diversity for Science and Breeding. Critical Reviews in Plant Sciences, 2015, 34, 43-104.	5.7	248
118	Genomewide Association Studies for 50 Agronomic Traits in Peanut Using the â€~Reference Set' Comprising 300 Genotypes from 48 Countries of the Semi-Arid Tropics of the World. PLoS ONE, 2014, 9, e105228.	2.5	124
119	Whitebacked planthopper Sogatella furcifera (HorvÃjth) (Homoptera: Delphacidae) resistance in rice variety Sinna Sivappu. Euphytica, 2014, 200, 139-148.	1.2	29
120	Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaeaL). BMC Genetics, 2014, 15, 133.	2.7	117
121	Development of <scp>NIL</scp> s from heterogeneous inbred families for validating the rust resistance <scp>QTL</scp> in peanut (<i><scp>A</scp>rachis hypogaea</i> L.). Plant Breeding, 2014, 133, 80-85.	1.9	20
122	Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. Theoretical and Applied Genetics, 2014, 127, 1263-1291.	3.6	86
123	Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2014, 127, 1771-1781.	3.6	167
124	Diversification of primary gene pool through introgression of resistance to foliar diseases from synthetic amphidiploids to cultivated groundnut (Arachis hypogaea L.). Crop Journal, 2014, 2, 110-119.	5.2	33
125	Groundnut. , 2014, , 161-173.		2
126	Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnology Advances, 2013, 31, 1120-1134.	11.7	289

#	Article	IF	CITATIONS
127	Markerâ€assisted introgression of bacterial blight and blast resistance into <scp>IR</scp> 58025B, an elite maintainer line of rice. Plant Breeding, 2013, 132, 586-594.	1.9	40
128	Improvement of two traditional Basmati rice varieties for bacterial blight resistance and plant stature through morphological and marker-assisted selection. Molecular Breeding, 2013, 31, 239-246.	2.1	39
129	Identification of Expressed Resistance Gene Analogs from Peanut (<i>Arachis hypogaea</i> L.) Expressed Sequence Tags. Journal of Integrative Plant Biology, 2013, 55, 453-461.	8.5	15
130	Groundnut improvement: use of genetic and genomic tools. Frontiers in Plant Science, 2013, 4, 23.	3.6	139
131	Recent Advances in Molecular Genetic Linkage Maps of Cultivated Peanut. Peanut Science, 2013, 40, 95-106.	0.1	19
132	Integrated Consensus Map of Cultivated Peanut and Wild Relatives Reveals Structures of the A and B Genomes of Arachis and Divergence of the Legume Genomes. DNA Research, 2013, 20, 173-184.	3.4	113
133	Genetic Mapping and Quantitative Trait Loci Analysis for Disease Resistance Using F ₂ and F ₅ Generationâ€based Genetic Maps Derived from †Tifrunner' Ă— †GT 20' in Peanut. Genome, 2013, 6, plantgenome2013.05.0018.	Paant	52
134	Single Nucleotide Polymorphism–based Genetic Diversity in the Reference Set of Peanut (<i>Arachis</i> spp.) by Developing and Applying Costâ€Effective Kompetitive Allele Specific Polymerase Chain Reaction Genotyping Assays. Plant Genome, 2013, 6, plantgenome2013.06.0019.	2.8	65
135	Pest and diseases: Old and new threats – Modern breeding tools to tailor new crop cultivars. Sécheresse, 2013, 24, 261-273.	0.1	4
136	Thiourea, a ROS Scavenger, Regulates Source-to-Sink Relationship to Enhance Crop Yield and Oil Content in Brassica juncea (L.). PLoS ONE, 2013, 8, e73921.	2.5	53
137	Thiourea mediates alleviation of UV-B stress-induced damage in the Indian mustard (<i>Brassica) Tj ETQq1 1 0.784</i>	4314 rgBT 2:1	/Qverlock 1
138	Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea) Tj ETQq0 0	02r.gBT /O∿	ventock 10 T
139	Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis) Tj ETQq1 1 0.7843	1241rgBT /0	D ve9 lock 1.0
140	Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnology Advances, 2012, 30, 1697-1706.	11.7	60
141	Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. Journal of Biosciences, 2012, 37, 811-820.	1.1	68
142	Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (<i>Arachis hypogaea</i>). Plant Breeding, 2012, 131, 139-147.	1.9	62
143	Advances in Arachis genomics for peanut improvement. Biotechnology Advances, 2012, 30, 639-651.	11.7	258
144	An International Reference Consensus Genetic Map with 897 Marker Loci Based on 11 Mapping Populations for Tetraploid Groundnut (Arachis hypogaea L.). PLoS ONE, 2012, 7, e41213.	2.5	89

#	Article	IF	CITATIONS
145	Markerâ€assisted improvement of a stable restorer line, KMRâ€3R and its derived hybrid KRH2 for bacterial blight resistance and grain quality. Plant Breeding, 2011, 130, 608-616.	1.9	31
146	Development of a PCR-based SNP marker system for effective selection of kernel length and kernel elongation in rice. Molecular Breeding, 2010, 26, 735-740.	2.1	43
147	Development of a simple functional marker for fragrance in rice and its validation in Indian Basmati and non-Basmati fragrant rice varieties. Molecular Breeding, 2009, 24, 185-190.	2.1	48