Jianmei W Leavenworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4359353/publications.pdf

Version: 2024-02-01

42 papers 1,381 citations

304743 22 h-index 36 g-index

45 all docs

45 docs citations

times ranked

45

2440 citing authors

#	Article	IF	CITATIONS
1	Immune Activity and Response Differences of Oncolytic Viral Therapy in Recurrent Glioblastoma: Gene Expression Analyses of a Phase IB Study. Clinical Cancer Research, 2022, 28, 498-506.	7.0	12
2	AlMing 2 promote lupus by targeting helpers. Clinical and Translational Medicine, 2022, 12, e844.	4.0	1
3	Positron emission tomography imaging with 89Zr-labeled anti-CD8 cys-diabody reveals CD8+ cell infiltration during oncolytic virus therapy in a glioma murine model. Scientific Reports, 2021, 11, 15384.	3.3	13
4	Lineage Reprogramming of Effector Regulatory T Cells in Cancer. Frontiers in Immunology, 2021, 12, 717421.	4.8	12
5	Dysregulated follicular regulatory T cells and antibody responses exacerbate experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2021, 18, 27.	7.2	9
6	RNF2 ablation reprograms the tumor-immune microenvironment and stimulates durable NK and CD4+ T-cell-dependent antitumor immunity. Nature Cancer, 2021, 2, 1018-1038.	13.2	11
7	Remodeling of the tumor microenvironment via disrupting Blimp1+ effector Treg activity augments response to anti-PD-1 blockade. Molecular Cancer, 2021, 20, 150.	19.2	31
8	Editorial: Immune Cell Lineage Reprogramming in Cancer. Frontiers in Immunology, 2021, 12, 838464.	4.8	2
9	Group II muscarinic acetylcholine receptors attenuate hepatic injury via Nrf2/ARE pathway. Toxicology and Applied Pharmacology, 2020, 395, 114978.	2.8	5
10	Angiostrongylus cantonensis Galectin-1 interacts with Annexin A2 to impair the viability of macrophages via activating JNK pathway. Parasites and Vectors, 2020, 13, 183.	2.5	10
11	Deletion of the RNA regulator HuR in tumorâ€associated microglia and macrophages stimulates antiâ€tumor immunity and attenuates glioma growth. Glia, 2019, 67, 2424-2439.	4.9	26
12	Current and Future Imaging Methods for Evaluating Response to Immunotherapy in Neuro-Oncology. Theranostics, 2019, 9, 5085-5104.	10.0	29
13	Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma. Cell Stress, 2019, 3, 47-65.	3.2	50
14	Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Reports, 2019, 29, 1848-1861.e6.	6.4	35
15	Towards Clinical Translation of CD8+ Regulatory T Cells Restricted by Non-Classical Major Histocompatibility Complex Ib Molecules. International Journal of Molecular Sciences, 2019, 20, 4829.	4.1	1
16	ATIM-32. PREDICTORS OF IMPROVED SURVIVAL FOLLOWING ONCOLYTIC VIRUS TREATMENT IN PATIENTS WITH RECURRENT GLIOBLASTOMA: GENE EXPRESSION ANALYSIS FROM THE PHASE IB G207 CLINICAL TRIAL. Neuro-Oncology, 2019, 21, vi8-vi8.	1.2	1
17	Abstract 2702: Contribution of effector regulatory T cells to the regulation of antitumor immunity. , 2019, , .		0
18	Abstract 147: Deletion of the RNA regulator HuR in microglia/macrophages promotes an anti-tumor microenvironment in glioblastoma. , 2019, , .		0

#	Article	IF	Citations
19	Abstract 147: Deletion of the RNA regulator HuR in microglia/macrophages promotes an anti-tumor microenvironment in glioblastoma. , 2019, , .		О
20	Abstract 2702: Contribution of effector regulatory T cells to the regulation of antitumor immunity. , 2019, , .		0
21	γδT Cells Contribute to Injury in the Developing Brain. American Journal of Pathology, 2018, 188, 757-767.	3.8	44
22	CD8 + T cells expressing both PD-1 and TIGIT but not CD226 are dysfunctional in acute myeloid leukemia (AML) patients. Clinical Immunology, 2018, 190, 64-73.	3.2	52
23	Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury. Frontiers in Neurology, 2018, 9, 159.	2.4	37
24	Chromatin remodeling by the NuRD complex regulates development of follicular helper and regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6780-6785.	7.1	38
25	Newly Characterized Murine Undifferentiated Sarcoma Models Sensitive to Virotherapy with Oncolytic HSV-1 M002. Molecular Therapy - Oncolytics, 2017, 7, 27-36.	4.4	13
26	Modulation of the Intratumoral Immune Landscape by Oncolytic Herpes Simplex Virus Virotherapy. Frontiers in Oncology, 2017, 7, 136.	2.8	40
27	The Role of Microglia and Macrophages in CNS Homeostasis, Autoimmunity, and Cancer. Journal of Immunology Research, 2017, 2017, 1-12.	2.2	140
28	$\hat{l}^3\hat{l}$ T cells but not $\hat{l}\pm\hat{l}^2$ T cells contribute to sepsis-induced white matter injury and motor abnormalities in mice. Journal of Neuroinflammation, 2017, 14, 255.	7.2	32
29	Alphavirus Replicon DNA Vectors Expressing Ebola GP and VP40 Antigens Induce Humoral and Cellular Immune Responses in Mice. Frontiers in Microbiology, 2017, 8, 2662.	3.5	18
30	Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15988-15993.	7.1	131
31	NK cell-based cancer immunotherapy: from basic biology to clinical application. Science China Life Sciences, 2015, 58, 1233-1245.	4.9	45
32	Intracellular osteopontin regulates homeostasis and function of natural killer cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 494-499.	7.1	61
33	A p85α-osteopontin axis couples the receptor ICOS to sustained Bcl-6 expression by follicular helper and regulatory T cells. Nature Immunology, 2015, 16, 96-106.	14.5	126
34	The immune response after hypoxia-ischemia in a mouse model of preterm brain injury. Journal of Neuroinflammation, 2014, 11, 153.	7.2	63
35	The effect of osteopontin and osteopontin-derived peptides on preterm brain injury. Journal of Neuroinflammation, 2014, 11, 197.	7.2	28
36	Amelioration of arthritis through mobilization of peptide-specific CD8+ regulatory T cells. Journal of Clinical Investigation, 2013, 123, 1382-1389.	8.2	74

#	Article	IF	CITATIONS
37	Mobilization of natural killer cells inhibits development of collagen-induced arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14584-14589.	7.1	68
38	Analysis of the cellular mechanism underlying inhibition of EAE after treatment with anti-NKG2A F(ab′) ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2562-2567.	7.1	58
39	SUMO Conjugation Contributes to Immune Deviation in Nonobese Diabetic Mice by Suppressing c-Maf Transactivation of <i>IL-4</i> . Journal of Immunology, 2009, 183, 1110-1119.	0.8	22
40	Engagement of transgenic Ly49A inhibits mouse CD4 cell activation by disrupting T cell receptor, but not CD28, signaling. Cellular Immunology, 2009, 257, 88-96.	3.0	2
41	câ€Maf interacts with câ€Myb to downâ€regulate Bclâ€2 expression and increase apoptosis in peripheral CD4 cells. European Journal of Immunology, 2007, 37, 2868-2880.	2.9	28
42	Contribution of Dysregulated B-Cells and IgE Antibody Responses to Multiple Sclerosis. Frontiers in Immunology, 0, 13 , .	4.8	8