List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4359046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical development of an anti-GPC-1 antibody for the treatment of cancer. Expert Opinion on Biological Therapy, 2022, , 1-11.	3.1	4
2	Synthesis, characterisation and evaluation of hyperbranched <i>N</i> -(2-hydroxypropyl) methacrylamides for transport and delivery in pancreatic cell lines <i>in vitro</i> and <i>in vivo</i> . Biomaterials Science, 2022, 10, 2328-2344.	5.4	3
3	Simultaneous Dual Echo Gadolinium Enhanced MR-PET for Evaluation of PET Tracer Delivery in Altered Pathophysiology. Frontiers in Physics, 2022, 10, .	2.1	0
4	Understanding nanomedicine treatment in an aggressive spontaneous brain cancer model at the stage of early blood brain barrier disruption. Biomaterials, 2022, 283, 121416.	11.4	13
5	Template-Assisted Antibody Assembly: A Versatile Approach for Engineering Functional Antibody Nanoparticles. Chemistry of Materials, 2022, 34, 3694-3704.	6.7	4
6	Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomaterials Science, 2022, 10, 3029-3053.	5.4	24
7	Antibody-Based Formats to Target Glioblastoma: Overcoming Barriers to Protein Drug Delivery. Molecular Pharmaceutics, 2022, 19, 1233-1247.	4.6	2
8	Confined microemulsion sono-polymerization of poly(ethylene glycol) nanoparticles for targeted delivery. Chemical Communications, 2022, 58, 7777-7780.	4.1	7
9	Development of targeted micelles and polymersomes prepared from degradable RAFT-based diblock copolymers and their potential role as nanocarriers for chemotherapeutics. Polymer Chemistry, 2022, 13, 4004-4017.	3.9	3
10	Pre-targeting of polymeric nanomaterials to balance tumour accumulation and clearance. Chemical Communications, 2022, 58, 7912-7915.	4.1	9
11	Understanding the role of colon-specific microparticles based on retrograded starch/pectin in the delivery of chitosan nanoparticles along the gastrointestinal tract. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 371-378.	4.3	27
12	Engineering Fluorescent Gold Nanoclusters Using Xanthate-Functionalized Hydrophilic Polymers: Toward Enhanced Monodispersity and Stability. Nano Letters, 2021, 21, 476-484.	9.1	36
13	Nanobody-displaying porous silicon nanoparticles for the co-delivery of siRNA and doxorubicin. Biomaterials Science, 2021, 9, 133-147.	5.4	29
14	Fluorophore Selection and Incorporation Contribute to Permeation and Distribution Behaviors of Hyperbranched Polymers in Multi-Cellular Tumor Spheroids and Xenograft Tumor Models. ACS Applied Bio Materials, 2021, 4, 2675-2685.	4.6	4
15	Celebrating Women in the Pharmaceutical Sciences. Molecular Pharmaceutics, 2021, 18, 1487-1490.	4.6	2
16	Non-Viral Vector-Mediated Gene Therapy for ALS: Challenges and Future Perspectives. Molecular Pharmaceutics, 2021, 18, 2142-2160.	4.6	31
17	Poly(2-ethyl-2-oxazoline) bottlebrushes: How nanomaterial dimensions can influence biological interactions. European Polymer Journal, 2021, 151, 110447.	5.4	16
18	Evaluation of the in vivo fate of ultrapure alginate in a BALB/c mouse model. Carbohydrate Polymers, 2021, 262, 117947.	10.2	3

#	Article	IF	CITATIONS
19	Interactions of core cross-linked poly(2-oxazoline) and poly(2-oxazine) micelles with immune cells in human blood. Biomaterials, 2021, 274, 120843.	11.4	26
20	Cyanine-5-Driven Behaviours of Hyperbranched Polymers Designed for Therapeutic Delivery Are Cell-Type Specific and Correlated with Polar Lipid Distribution in Membranes. Nanomaterials, 2021, 11, 1745.	4.1	1
21	Development of enteric-coated, biphasic chitosan/HPMC microcapsules for colon-targeted delivery of anticancer drug-loaded nanoparticles. International Journal of Pharmaceutics, 2021, 607, 121026.	5.2	20
22	Curcumin Chemoprevention Reduces the Incidence of Braf Mutant Colorectal Cancer in a Preclinical Study. Digestive Diseases and Sciences, 2021, 66, 4326-4332.	2.3	7
23	Oral Delivery of Multicompartment Nanomedicines for Colorectal Cancer Therapeutics: Combining Locoâ€Regional Delivery with Cellâ€Target Specificity. Advanced Therapeutics, 2020, 3, 1900171.	3.2	10
24	Hyperbranched Poly(2-oxazoline)s and Poly(ethylene glycol): A Structure–Activity Comparison of Biodistribution. Biomacromolecules, 2020, 21, 3318-3331.	5.4	18
25	Nextâ€Generation Polymeric Nanomedicines for Oncology: Perspectives and Future Directions. Macromolecular Rapid Communications, 2020, 41, e2000319.	3.9	17
26	Person-Specific Biomolecular Coronas Modulate Nanoparticle Interactions with Immune Cells in Human Blood. ACS Nano, 2020, 14, 15723-15737.	14.6	55
27	Effect of Chainâ€End Chemistries on the Efficiency of Coupling Antibodies to Polymers Using Unnatural Amino Acids. Macromolecular Rapid Communications, 2020, 41, e2000294.	3.9	3
28	Controlling the Biological Fate of Micellar Nanoparticles: Balancing Stealth and Targeting. ACS Nano, 2020, 14, 13739-13753.	14.6	30
29	Stepwise Like Supramolecular Polymerization of Plasmonic Nanoparticle Building Blocks through Complementary Interactions. Macromolecules, 2020, 53, 7469-7478.	4.8	5
30	The Impact of Polymer Size and Cleavability on the Intravenous Pharmacokinetics of PEG-Based Hyperbranched Polymers in Rats. Nanomaterials, 2020, 10, 2452.	4.1	8
31	The Evolving Landscape of Polymer Science and Engineering in Australia. Macromolecular Rapid Communications, 2020, 41, e2000414.	3.9	0
32	Understanding the Uptake of Nanomedicines at Different Stages of Brain Cancer Using a Modular Nanocarrier Platform and Precision Bispecific Antibodies. ACS Central Science, 2020, 6, 727-738.	11.3	36
33	Surface polymer imprinted optical fibre sensor for dose detection of dabrafenib. Analyst, The, 2020, 145, 4504-4511.	3.5	14
34	Targeted and modular architectural polymers employing bioorthogonal chemistry for quantitative therapeutic delivery. Chemical Science, 2020, 11, 3268-3280.	7.4	22
35	Investigation of the Therapeutic Potential of a Synergistic Delivery System through Dual Controlled Release of Camptothecin–Doxorubicin. Advanced Therapeutics, 2020, 3, 1900202.	3.2	12
36	Direct Comparison of Poly(ethylene glycol) and Phosphorylcholine Drug-Loaded Nanoparticles In Vitro and In Vivo. Biomacromolecules, 2020, 21, 2320-2333.	5.4	14

#	Article	IF	CITATIONS
37	Synthesis of biscarboxylic acid functionalised EDTA mimicking polymers and their ability to form Zr(<scp>iv</scp>) chelation mediated nanostructures. Polymer Chemistry, 2020, 11, 2799-2810.	3.9	7
38	Characterization of the Biodistribution of a Silica Vesicle Nanovaccine Carrying a Rhipicephalus (Boophilus) microplus Protective Antigen With in vivo Live Animal Imaging. Frontiers in Bioengineering and Biotechnology, 2020, 8, 606652.	4.1	6
39	Targeted beta therapy of prostate cancer with 177Lu-labelled Miltuximab® antibody against glypican-1 (GPC-1). EJNMMI Research, 2020, 10, 46.	2.5	18
40	Cellular Targeting of Bispecific Antibody-Functionalized Poly(ethylene glycol) Capsules: Do Shape and Size Matter?. ACS Applied Materials & Interfaces, 2019, 11, 28720-28731.	8.0	18
41	Supramolecular Fluorine Magnetic Resonance Spectroscopy Probe Polymer Based on Passerini Bifunctional Monomer. ACS Macro Letters, 2019, 8, 1479-1483.	4.8	13
42	Engineered Polymeric Materials for Biological Applications: Overcoming Challenges of the Bio–Nano Interface. Polymers, 2019, 11, 1441.	4.5	24
43	Polymer design and component selection contribute to uptake, distribution & trafficking behaviours of polyethylene glycol hyperbranched polymers in live MDA-MB-468 breast cancer cells. Biomaterials Science, 2019, 7, 4661-4674.	5.4	13
44	Poly(2-oxazoline) macromonomers as building blocks for functional and biocompatible polymer architectures. European Polymer Journal, 2019, 121, 109258.	5.4	34
45	Ultrasound-responsive nanobubbles for enhanced intravitreal drug migration: An ex vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 102-107.	4.3	35
46	Tagged Core-Satellite Nanoassemblies: Role of Assembling Sequence on Surface-Enhanced Raman Scattering (SERS) Performance. Applied Spectroscopy, 2019, 73, 1428-1435.	2.2	7
47	Multifunctional lipid-coated calcium phosphate nanoplatforms for complete inhibition of large triple negative breast cancer via targeted combined therapy. Biomaterials, 2019, 216, 119232.	11.4	27
48	Modulating Targeting of Poly(ethylene glycol) Particles to Tumor Cells Using Bispecific Antibodies. Advanced Healthcare Materials, 2019, 8, e1801607.	7.6	38
49	Innovative Therapeutic Strategies for Effective Treatment of Brain Metastases. International Journal of Molecular Sciences, 2019, 20, 1280.	4.1	17
50	Importance of Polymer Length in Fructose-Based Polymeric Micelles for an Enhanced Biological Activity. Macromolecules, 2019, 52, 477-486.	4.8	23
51	Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. Journal of Controlled Release, 2018, 277, 1-13.	9.9	214
52	Modified Organosilica Core–Shell Nanoparticles for Stable pH Sensing in Biological Solutions. ACS Sensors, 2018, 3, 967-975.	7.8	21
53	Bispecific Antibody-Functionalized Upconversion Nanoprobe. Analytical Chemistry, 2018, 90, 3024-3029.	6.5	18
54	Enhanced delivery of siRNA to triple negative breast cancer cells <i>in vitro</i> and <i>in vivo</i> through functionalizing lipid-coated calcium phosphate nanoparticles with dual target ligands. Nanoscale, 2018, 10, 4258-4266.	5.6	64

#	Article	IF	CITATIONS
55	Recent Advances in the Generation of Antibody–Nanomaterial Conjugates. Advanced Healthcare Materials, 2018, 7, 1700607.	7.6	88
56	EphA3 Pay-Loaded Antibody Therapeutics for the Treatment of Glioblastoma. Cancers, 2018, 10, 519.	3.7	25
57	RNA interference to enhance radiation therapy: Targeting the DNA damage response. Cancer Letters, 2018, 439, 14-23.	7.2	9
58	Dependence of Block Copolymer Domain Spacing and Morphology on the Cation Structure of Ionic Liquid Additives. Macromolecules, 2018, 51, 8979-8986.	4.8	8
59	<i>In vivo</i> therapeutic evaluation of polymeric nanomedicines: effect of different targeting peptides on therapeutic efficacy against breast cancer. Nanotheranostics, 2018, 2, 360-370.	5.2	23
60	Influence of Charge on Hemocompatibility and Immunoreactivity of Polymeric Nanoparticles. ACS Applied Bio Materials, 2018, 1, 756-767.	4.6	23
61	Designed multifunctional polymeric nanomedicines: long-term biodistribution and tumour accumulation of aptamer-targeted nanomaterials. Chemical Communications, 2018, 54, 11538-11541.	4.1	37
62	Minimum information reporting in bio–nano experimental literature. Nature Nanotechnology, 2018, 13, 777-785.	31.5	455
63	Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility. ACS Central Science, 2018, 4, 718-723.	11.3	181
64	Stability of Trithiocarbonate RAFT Agents Containing Both a Cyano and a Carboxylic Acid Functional Group. ACS Macro Letters, 2017, 6, 287-291.	4.8	21
65	Switchable ¹⁹ F MRI polymer theranostics: towards in situ quantifiable drug release. Polymer Chemistry, 2017, 8, 5157-5166.	3.9	22
66	Charge Has a Marked Influence on Hyperbranched Polymer Nanoparticle Association in Whole Human Blood. ACS Macro Letters, 2017, 6, 586-592.	4.8	27
67	In Vivo Fate of Carbon Nanotubes with Different Physicochemical Properties for Gene Delivery Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 11461-11471.	8.0	37
68	Bridging Bio–Nano Science and Cancer Nanomedicine. ACS Nano, 2017, 11, 9594-9613.	14.6	304
69	Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics. Molecular Pharmaceutics, 2017, 14, 3539-3549.	4.6	45
70	Localised delivery of doxorubicin to prostate cancer cells through a PSMA-targeted hyperbranched polymer theranostic. Biomaterials, 2017, 141, 330-339.	11.4	68
71	Synthesis and post-polymerisation ligations of PEG-based hyperbranched polymers for RNA conjugation via reversible disulfide linkage. Macromolecular Research, 2017, 25, 599-614.	2.4	3
72	Effects of Surface Charge of Hyperbranched Polymers on Cytotoxicity, Dynamic Cellular Uptake and Localization, Hemotoxicity, and Pharmacokinetics in Mice. Molecular Pharmaceutics, 2017, 14, 4485-4497.	4.6	54

#	Article	IF	CITATIONS
73	Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation. ACS Applied Materials & Interfaces, 2017, 9, 41159-41167.	8.0	33
74	Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading. Frontiers in Pharmacology, 2016, 7, 185.	3.5	255
75	Overcoming Instability of Antibodyâ€Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies. Advanced Healthcare Materials, 2016, 5, 2055-2068.	7.6	52
76	Fluorinated POSS tar Polymers for ¹⁹ F MRI. Macromolecular Chemistry and Physics, 2016, 217, 2262-2274.	2.2	19
77	Biosensing made easy with PEG-targeted bi-specific antibodies. Chemical Communications, 2016, 52, 5730-5733.	4.1	11
78	Preclinical Imaging of siRNA Delivery. Australian Journal of Chemistry, 2016, 69, 1073.	0.9	1
79	Targeted Nanomaterials: Overcoming Instability of Antibody-Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies (Adv. Healthcare Mater. 16/2016). Advanced Healthcare Materials, 2016, 5, 1994-1994.	7.6	2
80	Spectral normalisation by error minimisation for prediction of conversion in solvent-free catalytic chain transfer polymerisations. RSC Advances, 2016, 6, 69484-69491.	3.6	3
81	Targeting Nanomedicines to Prostate Cancer: Evaluation of Specificity of Ligands to Two Different Receptors In Vivo. Pharmaceutical Research, 2016, 33, 2388-2399.	3.5	24
82	Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharmaceutical Research, 2016, 33, 2373-2387.	3.5	1,976
83	Multifunctional hyperbranched polymers for CT/ ¹⁹ F MRI bimodal molecular imaging. Polymer Chemistry, 2016, 7, 1059-1069.	3.9	28
84	Synthesis of ¹⁹ F nucleic acid–polymer conjugates as real-time MRI probes of biorecognition. Polymer Chemistry, 2016, 7, 2180-2191.	3.9	10
85	Perturbation of the Experimental Phase Diagram of a Diblock Copolymer by Blending with an Ionic Liquid. Macromolecules, 2016, 49, 205-214.	4.8	37
86	Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue. Biointerphases, 2015, 10, 04A305.	1.6	22
87	Interfacial RAFT Miniemulsion Polymerization: Architectures from an Interface. Macromolecular Chemistry and Physics, 2015, 216, 1271-1281.	2.2	7
88	EphA2 as a Diagnostic Imaging Target in Glioblastoma: A Positron Emission Tomography/Magnetic Resonance Imaging Study. Molecular Imaging, 2015, 14, 7290.2015.00008.	1.4	24
89	In Vivo Evaluation of Folate Decorated Cross-Linked Micelles for the Delivery of Platinum Anticancer Drugs. Biomacromolecules, 2015, 16, 515-523.	5.4	52
90	Utilising polymers to understand diseases: advanced molecular imaging agents. Polymer Chemistry, 2015, 6, 868-880.	3.9	28

#	Article	IF	CITATIONS
91	lmaging tumour distribution of a polymeric drug delivery platform <i>in vivo</i> by <scp>PETâ€MRI</scp> . Journal of Chemical Technology and Biotechnology, 2015, 90, 1237-1244.	3.2	9
92	Segmented Highly Branched Copolymers: Rationally Designed Macromolecules for Improved and Tunable ¹⁹ F MRI. Biomacromolecules, 2015, 16, 2827-2839.	5.4	50
93	The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: Evaluation of their potential for colon-specific delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 393-403.	4.3	44
94	Novel Polymeric Bioerodable Microparticles for Prolonged-Release Intrathecal Delivery of Analgesic Agents for Relief of Intractable Cancer-Related Pain. Journal of Pharmaceutical Sciences, 2015, 104, 2334-2344.	3.3	23
95	Evaluation of Polymeric Nanomedicines Targeted to PSMA: Effect of Ligand on Targeting Efficiency. Biomacromolecules, 2015, 16, 3235-3247.	5.4	38
96	Polymeric <scp>siRNA</scp> delivery vectors: knocking down cancers with polymericâ€based gene delivery systems. Journal of Chemical Technology and Biotechnology, 2015, 90, 1196-1208.	3.2	14
97	EphA2 as a Diagnostic Imaging Target in Glioblastoma: A Positron Emission Tomography/Magnetic Resonance Imaging Study. Molecular Imaging, 2015, 14, 385-99.	1.4	12
98	Development of a polymer theranostic for prostate cancer. Polymer Chemistry, 2014, 5, 6932-6942.	3.9	53
99	Can ionic liquid additives be used to extend the scope of poly(styrene)-block-poly(methyl) Tj ETQq1 1 0.784314 r 2014, 13, 031304.	gBT /Overl 0.9	ock 10 Tf 50 20
100	SERS-barcoded colloidal gold NP assemblies as imaging agents for use in biodiagnostics. Proceedings of SPIE, 2014, , .	0.8	1
101	A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microbial Cell Factories, 2014, 13, 14.	4.0	187
102	Multimodal Polymer Nanoparticles with Combined ¹⁹ F Magnetic Resonance and Optical Detection for Tunable, Targeted, Multimodal Imaging <i>in Vivo</i> . Journal of the American Chemical Society, 2014, 136, 2413-2419.	13.7	160
103	Effect of Supercritical Carbon Dioxide on the Loading and Release of Model Drugs from Polyurethane Films: Comparison with Solvent Casting. Macromolecular Chemistry and Physics, 2014, 215, 54-64.	2.2	9
104	Synthesis of a multimodal molecular imaging probe based on a hyperbranched polymer architecture. Polymer Chemistry, 2014, 5, 4450.	3.9	33
105	Facile one-spot synthesis of highly branched polycaprolactone. Polymer Chemistry, 2014, 5, 2997-3008.	3.9	18
106	Self assembly of plasmonic core–satellite nano-assemblies mediated by hyperbranched polymer linkers. Journal of Materials Chemistry B, 2014, 2, 2827-2837.	5.8	57
107	Hyperbranched Polymer–Cold Nanoparticle Assemblies: Role of Polymer Architecture in Hybrid Assembly Formation and SERS Activity. Langmuir, 2014, 30, 2249-2258. 	3.5	33
108	PEG-Based Hyperbranched Polymer Theranostics: Optimizing Chemistries for Improved Bioconjugation. Macromolecules, 2014, 47, 5211-5219.	4.8	30

#	Article	IF	CITATIONS
109	Biodegradable core crosslinked star polymer nanoparticles as ¹⁹ F MRI contrast agents for selective imaging. Polymer Chemistry, 2014, 5, 1760-1771.	3.9	66
110	Enhanced uptake of nanoparticle drug carriers via a thermoresponsive shell enhances cytotoxicity in a cancer cell line. Biomaterials Science, 2013, 1, 434.	5.4	63
111	SERSâ€based detection of barcoded gold nanoparticle assemblies from within animal tissue. Journal of Raman Spectroscopy, 2013, 44, 1659-1665.	2.5	17
112	Self-Assembled Hyperbranched Polymer–Gold Nanoparticle Hybrids: Understanding the Effect of Polymer Coverage on Assembly Size and SERS Performance. Langmuir, 2013, 29, 525-533.	3.5	53
113	The influence of domain segregation in ionic liquids upon controlled polymerisation mechanisms: RAFT polymerisation. Polymer Chemistry, 2013, 4, 1337-1344.	3.9	17
114	Aptamer-targeted hyperbranched polymers: towards greater specificity for tumours in vivo. Chemical Communications, 2013, 49, 3836.	4.1	39
115	A Method for Controlling the Aggregation of Gold Nanoparticles: Tuning of Optical and Spectroscopic Properties. Langmuir, 2013, 29, 8266-8274.	3.5	76
116	Influence of oxidation upon the CO2 capture performance of a phenolic-resin-derived carbon. Fuel Processing Technology, 2013, 110, 53-60.	7.2	40
117	pH-responsive star polymer nanoparticles: potential 19F MRI contrast agents for tumour-selective imaging. Polymer Chemistry, 2013, 4, 4480.	3.9	66
118	Polymers as Probes for Multimodal Imaging with MRI. Macromolecular Chemistry and Physics, 2012, 213, 2567-2572.	2.2	17
119	Hyperbranched polymers for molecular imaging: designing polymers for parahydrogen induced polarisation (PHIP). Chemical Communications, 2012, 48, 1583-1585.	4.1	31
120	Effect of Solvent Quality on the Solution Properties of Assemblies of Partially Fluorinated Amphiphilic Diblock Copolymers. Macromolecules, 2012, 45, 8681-8690.	4.8	28
121	Molecular imaging with polymers. Polymer Chemistry, 2012, 3, 1384.	3.9	54
122	One-Pot Synthesis of Block Copolymers in Supercritical Carbon Dioxide: A Simple Versatile Route to Nanostructured Microparticles. Journal of the American Chemical Society, 2012, 134, 4772-4781.	13.7	93
123	Polysiloxanes polymers with hyperbranched structure and multivinyl functionality. Journal of Polymer Science Part A, 2012, 50, 629-637.	2.3	27
124	Hyperbranched polymers as delivery vectors for oligonucleotides. Journal of Polymer Science Part A, 2012, 50, 2585-2595.	2.3	42
125	In situ formation of crosslinked core–corona polymeric nanoparticles from a novel hyperbranched core. Polymer Chemistry, 2012, 3, 2807.	3.9	3
126	NMR as a probe of nanostructured domains in ionic liquids: Does domain segregation explain increased performance of free radical polymerisation?. Chemical Science, 2011, 2, 1810.	7.4	29

#	Article	IF	CITATIONS
127	Biodegradable Coreâ^'Shell Materials via RAFT and ROP: Characterization and Comparison of Hyperbranched and Microgel Particles. Macromolecules, 2011, 44, 1347-1354.	4.8	39
128	Controlled polymerisation of lactide using an organo-catalyst in supercritical carbon dioxide. Green Chemistry, 2011, 13, 2032.	9.0	28
129	Responsive hybrid block co-polymer conjugates of proteins–controlled architecture to modulate substrate specificity and solution behaviour. Polymer Chemistry, 2011, 2, 1567.	3.9	52
130	Effect of Molecular Architecture on the Performance of ¹⁹ F NMR Imaging Agents. ACS Symposium Series, 2011, , 459-472.	0.5	2
131	Modular Construction of Multifunctional Bioresponsive Cell-Targeted Nanoparticles for Gene Delivery. Bioconjugate Chemistry, 2011, 22, 156-168.	3.6	49
132	New vinyl ester copolymers as stabilisers for dispersion polymerisation in scCO2. Polymer, 2011, 52, 5403-5409.	3.8	35
133	Influence of compatibilizing agent molecular structure on the mechanical properties of phosphate glass fiberâ€reinforced PLA composites. Journal of Polymer Science Part A, 2010, 48, 3082-3094.	2.3	35
134	Functional Hyperbranched Polymers: Toward Targeted <i>in Vivo</i> ¹⁹ F Magnetic Resonance Imaging Using Designed Macromolecules. Journal of the American Chemical Society, 2010, 132, 5336-5337.	13.7	168
135	â€~Isothermal' phase transitions and supramolecular architecture changes in thermoresponsive polymers via acid-labile side-chains. Polymer Chemistry, 2010, 1, 1252.	3.9	16
136	Temperature Dependence of the Dielectric Properties of 2,2′-Azobis(2-methyl-butyronitrile) (AMBN). Industrial & Engineering Chemistry Research, 2010, 49, 3011-3014.	3.7	26
137	Synthesis and Phase Behavior of CO ₂ -Soluble Hydrocarbon Copolymer: Poly(vinyl) Tj ETQq1 1 0.784	1314.rgBT 4.8	/Overlock 10
138	Dielectric Properties of Free-Radical Polymerizations: Molecularly Symmetrical Initiators during Thermal Decomposition. Industrial & Engineering Chemistry Research, 2010, 49, 1703-1710.	3.7	25
139	Preparation of Sodium-Capped Poly(lactic acid) Oligomers by Catalytic Initiation with a Sodium α-, β-, or γ-Hydroxyacids. Macromolecules, 2010, 43, 185-192.	4.8	8
140	High-pressure real-time 129Xe NMR: monitoring of surfactant conformation during the self-assembly of reverse micelles in supercritical carbon dioxide. Chemical Communications, 2010, 46, 2850.	4.1	5
141	RAFT-functional ionic liquids: towards understanding controlled free radical polymerisation in ionic liquids. Journal of Materials Chemistry, 2009, 19, 2679.	6.7	36
142	One-pot controlled synthesis of biodegradable and biocompatible co-polymer micelles. Journal of Materials Chemistry, 2009, 19, 4529.	6.7	39
143	Controlled Dispersion Polymerization in Supercritical Carbon Dioxide. Australian Journal of Chemistry, 2009, 62, 786.	0.9	42
144	Successful Dispersion Polymerization in Supercritical CO ₂ Using Polyvinylalkylate Hydrocarbon Surfactants Synthesized and Anchored via RAFT. Journal of the American Chemical Society, 2008, 130, 12242-12243.	13.7	96

#	Article	IF	CITATIONS
145	Free-Radical Polymerization in Ionic Liquids: The Case for a Protected Radical. Macromolecules, 2008, 41, 2814-2820.	4.8	68
146	Dispersion polymerisation in supercritical CO2 using macro-RAFT agents. Chemical Communications, 2008, , 5942.	4.1	70
147	HRP-mediated inverse emulsion polymerisation of acrylamide in supercritical carbon dioxide. Green Chemistry, 2008, 10, 863.	9.0	27
148	Epoxy functionalised poly(ε-caprolactone): synthesis and application. Chemical Communications, 2008, , 5806.	4.1	33
149	Controlled Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide via RAFT. Macromolecules, 2008, 41, 1215-1222.	4.8	88
150	Supercritical CO2: an effective medium for the chemo-enzymatic synthesis of block copolymers?. Chemical Communications, 2007, , 3805.	4.1	32
151	"Living―Polymer Beads in Supercritical CO2. Macromolecules, 2007, 40, 2965-2967.	4.8	65
152	Novel one pot synthesis of silver nanoparticle–polymer composites by supercritical CO2 polymerisation in the presence of a RAFT agent. Chemical Communications, 2007, , 3933.	4.1	36
153	GECO-DOSY Post-Processing Analysis of Polymers. Macromolecules, 2007, 40, 976-982.	4.8	7
154	Simultaneous enzymatic ring opening polymerisation and RAFT-mediated polymerisation in supercritical CO2. Chemical Communications, 2006, , 4383.	4.1	64
155	Simultaneous Dynamic Kinetic Resolution in Combination with Enzymatic Ring-Opening Polymerization. Macromolecules, 2006, 39, 7302-7305.	4.8	27
156	Synthesis of Graft Copolymers by the Combination of ATRP and Enzymatic ROP in scCO2. Macromolecules, 2006, 39, 9080-9086.	4.8	62
157	Kinetics of Enzymatic Ring-Opening Polymerization of ε-Caprolactone in Supercritical Carbon Dioxide. Macromolecules, 2006, 39, 7967-7972.	4.8	83
158	One-Step Chemoenzymatic Synthesis of Poly(Îμ-caprolactone-block-methyl methacrylate) in Supercritical CO2. Macromolecules, 2006, 39, 5352-5358.	4.8	65
159	Investigation of spontaneous microemulsion formation in supercritical carbon dioxide using high-pressure NMR. Journal of Supercritical Fluids, 2006, 38, 111-118.	3.2	18
160	NMR Microscopy: A Tool for Measuring Monomer Diffusion in Supercritical CO2. Macromolecular Chemistry and Physics, 2006, 207, 1539-1545.	2.2	8
161	Equilibrium Swelling Measurements of Network and Semicrystalline Polymers in Supercritical Carbon Dioxide Using High-Pressure NMR. Macromolecules, 2005, 38, 3731-3737.	4.8	28
162	Determination of Domain Sizes in Blends of Poly(ethylene) and Poly(styrene) Formed in the Presence of Supercritical Carbon Dioxide. Macromolecules, 2004, 37, 6019-6026.	4.8	17

#	Article	IF	CITATIONS
163	New Structure Formation on \hat{I}^3 -irradiation of Poly(chlorotrifluoroethylene). Radiation Physics and Chemistry, 2003, 67, 729-736.	2.8	20
164	A study of the radiation chemistry of poly(chlorotrifluoroethylene) by ESR spectroscopy. Radiation Physics and Chemistry, 2003, 68, 857-864.	2.8	8
165	Investigation of a Dual siRNA/Chemotherapy Delivery System for Breast Cancer Therapy. ACS Omega, 0, ,	3.5	3