List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4358565/publications.pdf Version: 2024-02-01

RINLIN

#	Article	IF	CITATIONS
1	Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-Î' into an electrolyte for low-temperature solid oxide fuel cells. Nature Communications, 2019, 10, 1707.	12.8	218
2	Ultrathin Cu ₂ O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 2016, 8, 6173-6179.	5.6	191
3	High Yield Synthesis of Bracelet-like Hydrophilic Niâ^'Co Magnetic Alloy Flux-Closure Nanorings. Journal of the American Chemical Society, 2008, 130, 11606-11607.	13.7	164
4	An ammonia fuelled SOFC with a BaCe0.9Nd0.1O3â^'δ thin electrolyte prepared with a suspension spray. Journal of Power Sources, 2007, 170, 38-41.	7.8	112
5	High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+l̂´ cathode. Journal of Power Sources, 2009, 194, 835-837.	7.8	109
6	Magnetic field-induced solvothermal synthesis of one-dimensional assemblies of Ni-Co alloy microstructures. Nano Research, 2008, 1, 303-313.	10.4	108
7	A novel facile strategy to suppress Sr segregation for high-entropy stabilized LaO·8SrO·2MnO3-δ cathode. Journal of Power Sources, 2021, 482, 228959.	7.8	102
8	Recycling of fly ash for preparing porous mullite membrane supports with titania addition. Journal of Hazardous Materials, 2010, 180, 173-180.	12.4	99
9	High performance proton-conducting solid oxide fuel cells with a stable Sm0.5Sr0.5Co3â^l'î–Ce0.8Sm0.2O2â~l´ composite cathode. Journal of Power Sources, 2010, 195, 3155-3158.	7.8	95
10	Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3â~´Î´ for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35, 6905-6910.	7.1	93
11	Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials. Journal of Hazardous Materials, 2009, 172, 180-186.	12.4	92
12	Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray. Journal of Power Sources, 2008, 177, 330-333.	7.8	87
13	Morphology and electrochemical performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode material by a slurry spray drying method. Journal of Power Sources, 2008, 175, 564-569.	7.8	81
14	Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba0.5Sr0.5Co0.8Fe0.2O3-l´ã€"BaZr0.1Ce0.7Y0.2O3-l´ composite cathode. Journal of Power Sources, 2009, 186, 58-61.	7.8	77
15	Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water. Environmental Science & Technology, 2017, 51, 13363-13371.	10.0	77
16	Mo-doped Pr 0.6 Sr 0.4 Fe 0.8 Ni 0.2 O 3-δ as potential electrodes for intermediate-temperature symmetrical solid oxide fuel cells. Electrochimica Acta, 2017, 227, 33-40.	5.2	73
17	High performance protonic ceramic membrane fuel cells (PCMFCs) with Ba0.5Sr0.5Zn0.2Fe0.8O3â^î´ perovskite cathode. Electrochemistry Communications, 2008, 10, 1388-1391.	4.7	71
18	In situ screen-printed BaZr0.1Ce0.7Y0.2O3â~δ electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo2O5+x cathode. Journal of Power Sources, 2009, 186, 446-449.	7.8	67

#	Article	IF	CITATIONS
19	Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts. Chemical Engineering Journal, 2016, 286, 339-346.	12.7	67
20	A cobalt-free Sm0.5Sr0.5Fe0.8Cu0.2O3â~δ–Ce0.8Sm0.2O2â~δ composite cathode for proton-conducting solid oxide fuel cells. Journal of Power Sources, 2011, 196, 2631-2634.	7.8	66
21	Simple solid oxide fuel cells. Journal of Alloys and Compounds, 2010, 490, 214-222.	5.5	55
22	Enhanced performance of symmetrical solid oxide fuel cells using a doped ceria buffer layer. Electrochimica Acta, 2016, 208, 318-324.	5.2	53
23	Novel quasi-symmetric solid oxide fuel cells with enhanced electrochemical performance. Journal of Power Sources, 2016, 310, 109-117.	7.8	53
24	An Upgraded Lithium Ion Battery Based on a Polymeric Separator Incorporated with Anode Active Materials. Advanced Energy Materials, 2019, 9, 1803627.	19.5	53
25	A high-entropy perovskite cathode for solid oxide fuel cells. Journal of Alloys and Compounds, 2021, 872, 159633.	5.5	53
26	A cobalt-free SrFe0.9Sb0.1O3â^`î´ cathode material for proton-conducting solid oxide fuel cells with stable BaZr0.1Ce0.7Y0.1Yb0.1O3â^`î´ electrolyte. Journal of Power Sources, 2010, 195, 7042-7045.	7.8	48
27	Stable, easily sintered BaCe0.5Zr0.3Y0.16Zn0.04O3â^îr´ electrolyte-based protonic ceramic membrane fuel cells with Ba0.5Sr0.5Zn0.2Fe0.8O3â^îr´ perovskite cathode. Journal of Power Sources, 2008, 183, 479-484.	7.8	46
28	Effects of organic acids of different molecular size on phosphate removal by HZO-201 nanocomposite. Chemosphere, 2017, 166, 422-430.	8.2	43
29	Surface Functionalization of g ₃ N ₄ : Molecularâ€Level Design of Nobleâ€Metalâ€Free Hydrogen Evolution Photocatalysts. Chemistry - A European Journal, 2015, 21, 10290-10295.	3.3	42
30	Progress in Ni-based anode materials for direct hydrocarbon solid oxide fuel cells. Journal of Materials Science, 2018, 53, 8747-8765.	3.7	42
31	Exploiting rare-earth-abundant layered perovskite cathodes of LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln=La and) Tj ETQ	q1_10.78 7.1	4314 rgBT /0 42
32	Reduced-temperature redox-stable LSM as a novel symmetrical electrode material for SOFCs. Electrochimica Acta, 2018, 260, 121-128.	5.2	42
33	Ag ₂ S Quantum Dots as an Infrared Excited Photocatalyst for Hydrogen Production. ACS Applied Energy Materials, 2019, 2, 2751-2759.	5.1	40
34	Highly promoted performance of triple-conducting cathode for YSZ-based SOFC via fluorine anion doping. Ceramics International, 2020, 46, 23964-23971.	4.8	40
35	Layered perovskite LaBaCuMO5+x (M=Fe, Co) cathodes for intermediate-temperature protonic ceramic membrane fuel cells. Journal of Alloys and Compounds, 2010, 493, 252-255.	5.5	39
36	Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels. International Journal of Hydrogen Energy, 2015, 40, 3035-3047.	7.1	39

#	Article	IF	CITATIONS
37	High sintering activity Cu–Gd co-doped CeO2 electrolyte for solid oxide fuel cells. Journal of Power Sources, 2010, 195, 6510-6515.	7.8	38
38	Highly permeable porous YSZ hollow fiber membrane prepared using ethanol as external coagulant. Journal of Alloys and Compounds, 2010, 494, 366-371.	5.5	37
39	Numerical simulation of cell-to-cell performance variation within a syngas-fuelled planar solid oxide fuel cell stack. Applied Thermal Engineering, 2017, 114, 653-662.	6.0	37
40	A Zn-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δPerovskite Cathode with Enhanced ORR Catalytic Activity for SOFCs. Catalysts, 2020, 10, 235.	3.5	37
41	Enhanced ORR activity of A-site deficiency engineered BaCoO·4FeO·4ZrO·1YO·1O3-δ cathode in practical YSZ fuel cells. International Journal of Hydrogen Energy, 2021, 46, 5593-5603.	7.1	37
42	Asymmetric porous cordierite hollow fiber membrane for microfiltration. Journal of Alloys and Compounds, 2009, 487, 631-638.	5.5	36
43	A cobalt-free Sm0.5Sr0.5FeO3â^î^–BaZr0.1Ce0.7Y0.2O3â^î^ composite cathode for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 8630-8634.	7.1	35
44	Fabrication of Li2TiO3 pebbles by water-based sol–gel method. Fusion Engineering and Design, 2008, 83, 112-116.	1.9	34
45	A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells. Journal of Power Sources, 2008, 179, 576-583.	7.8	33
46	A cathode-supported SOFC with thin Ce0.8Sm0.2O1.9 electrolyte prepared by a suspension spray. Journal of Alloys and Compounds, 2008, 465, 285-290.	5.5	33
47	Screen-printed BaCe0.8Sm0.2O3â [~] Î [~] thin membrane solid oxide fuel cells with surface modification by spray coating. Journal of Alloys and Compounds, 2009, 473, 48-52.	5.5	33
48	Thin yttria-stabilized zirconia electrolyte and transition layers fabricated by particle suspension spray. Journal of Power Sources, 2007, 164, 567-571.	7.8	31
49	SrCo0.9Sb0.1O3â^î^ cubic perovskite as a novel cathode for intermediate-to-low temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2009, 472, 556-558.	5.5	30
50	Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.2O3â~ʾĨ´ perovskite cathode and functional graded anode. Journal of Power Sources, 2010, 195, 1624-1629.	7.8	29
51	Layered SmBaCuCoO5+ and SmBaCuFeO5+ perovskite oxides as cathode materials for proton-conducting SOFCs. Journal of Alloys and Compounds, 2010, 492, 291-294.	5.5	29
52	Preparation and electrochemical properties of Li[Ni1/3Co1/3Mn1â^'x/3Zrx/3]O2 cathode materials for Li-ion batteries. Journal of Power Sources, 2007, 174, 544-547.	7.8	28
53	Superior trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene aerogel composite. Journal of Environmental Sciences, 2020, 88, 90-102.	6.1	28
54	Improving stability and electrochemical performance of Ba0.5Sr0.5Co0.2Fe0.8O3-Î ^r electrode for symmetrical solid oxide fuel cells by Mo doping. Journal of Alloys and Compounds, 2020, 831, 154711.	5.5	27

#	Article	IF	CITATIONS
55	Fabrication and improvement of the density of Li2TiO3 pebbles by the optimization of a sol–gel method. Journal of Nuclear Materials, 2009, 393, 186-191.	2.7	25
56	(La, Pr)0.8Sr0.2FeO3â^`–Sm0.2Ce0.8O2â^' composite cathode for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 13665-13670.	7.1	25
57	Comparative study of electrochemical properties of different composite cathode materials associated to stable proton conducting BaZr 0.7 Pr 0.1 Y 0.2 O 3-δ electrolyte. Electrochimica Acta, 2014, 146, 1-7.	5.2	25
58	Cost-effective tubular cordierite micro-filtration membranes processed by co-sintering. Journal of Alloys and Compounds, 2009, 477, L35-L40.	5.5	24
59	Evaluation of simple, easily sintered La0.7Ca0.3Cr0.97 O3â^´Î´ perovskite oxide as novel interconnect material for solid oxide fuel cells. Journal of Alloys and Compounds, 2009, 479, 764-768.	5.5	24
60	Preparation and characterization of carbon-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1807-1811.	2.5	24
61	Low-temperature protonic ceramic membrane fuel cells (PCMFCs) with SrCo0.9Sb0.1O3â^î´ cubic perovskite cathode. Journal of Power Sources, 2008, 185, 937-940.	7.8	23
62	Improvement of the performances of tubular solid oxide fuel cells by optimizing co-sintering temperature of the NiO/YSZ anode-YSZ electrolyte double layers. Journal of Power Sources, 2007, 171, 495-498.	7.8	22
63	Characterization and polarization DRT analysis of a stable and highly active proton-conducting cathode. Ceramics International, 2018, 44, 14297-14302.	4.8	22
64	Highly active self-assembled hybrid catalyst with multiphase heterointerfaces to accelerate cathodic oxygen reduction of intermediate-temperature solid oxide fuel cells. Ceramics International, 2020, 46, 9661-9668.	4.8	22
65	Potentiality of cobalt-free perovskite Ba0.5Sr0.5Fe0.9Mo0.1O3â~δas a single-phase cathode for intermediate-to-low-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38, 14323-14328.	7.1	21
66	Enhance coking tolerance of high-performance direct carbon dioxide-methane solid oxide fuel cells with an additional internal reforming catalyst. Journal of Power Sources, 2021, 512, 230533.	7.8	21
67	A promising cathode for proton-conducting intermediate temperature solid oxide fuel cells: Y0.8Ca0.2BaCo4O7+δ. Ceramics International, 2015, 41, 6687-6692.	4.8	19
68	A robust carbon tolerant anode for solid oxide fuel cells. Science China Materials, 2015, 58, 204-212.	6.3	19
69	An efficient and prospective self-assembled hybrid electrocatalyst for symmetrical and reversible solid oxide cells. Electrochimica Acta, 2020, 362, 137171.	5.2	19
70	A new A-site excessive strategy to improve performance of layered perovskite cathode for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2017, 231, 686-693.	5.2	18
71	Evaluation of electrical conductivity and oxygen diffusivity of the typical Ruddlesden-Popper oxide Sr3Fe2O7 Ceramics International, 2017, 43, 16264-16269.	4.8	18
72	g-C3N4/TiO2 hybrid film on the metal surface, a cheap and efficient sunlight active photoelectrochemical anticorrosion coating. Journal of Materials Science: Materials in Electronics, 2019, 30, 12710-12717.	2.2	18

#	Article	IF	CITATIONS
73	Combustion synthesis and characterization of Cu–Sm co-doped CeO2 electrolytes. Journal of the European Ceramic Society, 2011, 31, 2365-2376.	5.7	17
74	New insights into the fractionation of effluent organic matter on diagnosis of key composition affecting advanced phosphate removal by Zr-based nanocomposite. Water Research, 2020, 186, 116299.	11.3	17
75	Fabrication of dense LaCrO3-based interconnect thin membrane on anode substrates by co-firing. Materials Research Bulletin, 2009, 44, 2127-2133.	5.2	16
76	BaZr0.1Ce0.7Y0.2O3â~´Î´ proton-conducting electrolyte prepared by gel-casting for low-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2009, 474, 364-369.	5.5	16
77	Tuning Ba0.5Sr0.5Co0.8Fe0.2O3-Î′ cathode to high stability and activity via Ce-doping for ceramic fuel cells. Ceramics International, 2022, 48, 31418-31427.	4.8	14
78	Development of a novel type of composite cathode material for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 5940-5945.	7.1	13
79	A robust NiO–Sm0.2Ce0.8O1.9 anode for direct-methane solid oxide fuel cell. Materials Research Bulletin, 2015, 71, 1-6.	5.2	13
80	Improved performance of symmetrical solid oxide fuel cells with redox-reversible cermet electrodes. Materials Letters, 2017, 188, 413-416.	2.6	12
81	Highly sulfur poisoning-tolerant BaCeO ₃ -impregnated La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^`<i>δ</i>} cathodes for solid oxide fuel cells. Journal Physics D: Applied Physics, 2018, 51, 435502.	2.8	12
82	Control of endwall secondary flow in a compressor cascade with dielectric barrier discharge plasma actuation. Science in China Series D: Earth Sciences, 2009, 52, 3715-3721.	0.9	11
83	Preparation and characterization of Ba0.5Sr0.5Fe0.9Ni0.1O3â^î–Sm0.2Ce0.8O1.9 compose cathode for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 9830-9835.	7.1	11
84	Layered perovskite oxide Y0.8Ca0.2BaCoFeO5+ $\hat{1}$ as a novel cathode material for intermediate-temperature solid oxide fuel cells. Journal of Rare Earths, 2015, 33, 519-523.	4.8	11
85	New Gd-Zn co-doping enhanced mechanical properties of BaZrO3 proton conductors with high conductivity for IT-SOFCs. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 238-239, 76-82.	3.5	11
86	Phase stability and hydrogen permeation performance of BaCoO·4FeO·4ZrO·1YO·1O3-δ ceramic membranes. Ceramics International, 2022, 48, 9946-9954.	4.8	10
87	Enhancing performance and stability of symmetrical solid oxide fuel cells via quasi-symmetrical ceria-based buffer layers. Ceramics International, 2022, 48, 27509-27515.	4.8	10
88	Stable, easily sintered BaCe0.5Zr0.3Y0.16Zn0.04O3â^î^ electrolyte-based proton-conducting solid oxide fuel cells by gel-casting and suspension spray. Journal of Alloys and Compounds, 2009, 478, 590-593.	5.5	9
89	A simple Ce-doping strategy to enhance stability of hybrid symmetrical electrode for solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 29259-29270.	7.1	9
90	Predicting Perovskite Performance with Multiple Machine-Learning Algorithms. Crystals, 2021, 11, 818.	2.2	9

#	Article	IF	CITATIONS
91	One stable electrocatalyst for two evolution reactions by one-pot combustion synthesis. International Journal of Hydrogen Energy, 2020, 45, 22691-22699.	7.1	8
92	Crl ₃ /Y ₂ CH ₂ Heterointerface-Induced Stable Half-Metallicity of Two-Dimensional Crl ₃ Monolayer Ferromagnets. ACS Applied Materials & Interfaces, 2021, 13, 16694-16703.	8.0	8
93	Nanoengineering electrode for yttria-stabilized zirconia-based symmetrical solid oxide fuel cells to achieve superior output performance. Separation and Purification Technology, 2022, 295, 121174.	7.9	8
94	Understanding the Surface of g-C3N4, an Experimental Investigation of the Catalytic Active Site on the Interface. Catalysis Letters, 2019, 149, 3296-3303.	2.6	7
95	A simple, feasible, and non-hazardous laboratory evaluation of direct ammonia solid oxide fuel cells fueled by aqueous ammonia. Separation and Purification Technology, 2022, 297, 121511.	7.9	7
96	Promoted Performance of Layered Perovskite PrBaFe2O5+δCathode for Protonic Ceramic Fuel Cells by Zn Doping. Catalysts, 2022, 12, 488.	3.5	6
97	A stable Zr-Y co-doped perovskite BaCo0.4Fe0.4Zr0.1Y0.1O3â~î´ ceramic membrane for highly efficient oxygen separation. Separation and Purification Technology, 2022, 295, 121206.	7.9	6
98	Mechanical strengthening of Sm-doped CeO2 ceramics by 1mol% cobalt oxide for solid oxide fuel cell application. Journal of Power Sources, 2011, 196, 8402-8405.	7.8	5
99	Alkaline-earth-free quasi-ternary La(Co, Ni, Fe)O3â^´Î´ perovskite as potential cathode for solid oxide fuel cells. Materials Research Express, 2019, 6, 096310.	1.6	5
100	Influences of equal A-site rare-deficiency or B-site high-valent metal doping on NdBaFe2O employed as the symmetrical electrode for solid oxide fuel cells. Journal of Alloys and Compounds, 2022, 918, 165368.	5.5	5
101	Synthesis and characterization of a Sr0.95Y0.05TiO3â~î^based hydrogen electrode for reversible solid oxide cells. RSC Advances, 2015, 5, 17000-17006.	3.6	4
102	SrCo0.9Sb0.1O3–δ cubic perovskite as a novel cathode for intermediate-to-low temperature SOFCs. Fuel Cells Bulletin, 2009, 2009, 12-15.	0.1	3
103	Stable and easily sintered (Pr0.5Nd0.5)0.7Ca0.3CrO3â^î/Sm0.2Ce0.8O1.9 composite interconnect materials for IT-solid oxide fuel cells. Journal of Power Sources, 2011, 196, 2075-2079.	7.8	2
104	PVA-assisted synthesis and characterization of nano-crystalline La3+ and Mg2+ co-doped CeO2 electrolyte for intermediate-temperature solid oxide fuel cells. Ionics, 2013, 19, 343-349.	2.4	2
105	Frontispiece: Surface Functionalization of g-C3N4: Molecular-Level Design of Noble-Metal-Free Hydrogen Evolution Photocatalysts. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	1
106	A new in-situ-grown Ni-Sr2WO5â~δ cermet to enhance coking tolerance of direct-hydrocarbon solid oxide fuel cells. Materials Letters, 2021, 301, 130301.	2.6	1
107	Fly ash to improve density and ionic conductivity of solid oxide cell electrolytes. Materials Today Communications, 2022, , 103546.	1.9	1
108	Micro-Tubular Solid Oxide Fuel Cell with Asymmetric Structure Anode and La _{0.6} Sr _{0.4} Co _{0.8} Cu _{0.2} O _{3â^îî} Perovskite Cathode. Advanced Materials Research, 2011, 197-198, 672-676.	0.3	0

#	Article	IF	CITATIONS
109	Preparation and Investigation of Cu Doped(Pr _{0.5} Nd _{0.5}) _{0.7} Ca _{0.3&l } Ceramic Interconnect Materials. Applied Mechanics and Materials, 0, 448-453, 2950-2958.	t; /su b>	Cr@ <sub8< td=""></sub8<>
110	CO2-Stable Alkaline-Earth-Free Solid Oxide Fuel Cells with Ni0.7Co0.3O-Ce0.8Sm0.2O1.9Composite Cathodes. ECS Transactions, 2017, 78, 489-497.	0.5	0
111	Lowering the sintering temperature of low-temperature solid oxide fuel cells with Sm3+ and Nd3+ co-doped ceria electrolyte. , 2017, , .		0