Francois Massol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4358395/publications.pdf

Version: 2024-02-01

79 papers

4,027 citations

32 h-index 59 g-index

90 all docs 90 docs citations

90 times ranked 6035 citing authors

#	Article	IF	Citations
1	A user's guide to functional diversity indices. Ecological Monographs, 2010, 80, 469-484.	5.4	542
2	Linking community and ecosystem dynamics through spatial ecology. Ecology Letters, 2011, 14, 313-323.	6.4	213
3	Trophic theory of island biogeography. Ecology Letters, 2011, 14, 1010-1016.	6.4	198
4	Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. Food Policy, 2015, 56, 41-50.	6.0	190
5	Seed exchange networks for agrobiodiversity conservation. A review. Agronomy for Sustainable Development, 2013, 33, 151-175.	5.3	179
6	Stability and complexity in model meta-ecosystems. Nature Communications, 2016, 7, 12457.	12.8	149
7	Life history and ecoâ€evolutionary dynamics in light of the gut microbiota. Oikos, 2017, 126, 508-531.	2.7	139
8	Mandrills use olfaction to socially avoid parasitized conspecifics. Science Advances, 2017, 3, e1601721.	10.3	132
9	No complexity–stability relationship in empirical ecosystems. Nature Communications, 2016, 7, 12573.	12.8	121
10	Extending the concept of keystone species to communities and ecosystems. Ecology Letters, 2013, 16, 1-8.	6.4	114
11	An empiricist's guide to theoretical predictions on the evolution of dispersal. Interface Focus, 2013, 3, 20130028.	3.0	105
12	How do genetic correlations affect species range shifts in a changing environment?. Ecology Letters, 2012, 15, 251-259.	6.4	96
13	Unifying sources and sinks in ecology andÂ <scp>E</scp> arth sciences. Biological Reviews, 2013, 88, 365-379.	10.4	85
14	Pollination Fluctuations Drive Evolutionary Syndromes Linking Dispersal and Mating System. American Naturalist, 2009, 174, 46-55.	2.1	83
15	Drought reduced monoterpene emissions from the evergreen Mediterranean oak & amp;lt;i>Quercus ilex: results from a throughfall displacement experiment. Biogeosciences, 2009, 6, 1167-1180.	3.3	83
16	Networking Our Way to Better Ecosystem Service Provision. Trends in Ecology and Evolution, 2016, 31, 105-115.	8.7	72
17	Biomonitoring for the 21st Century: Integrating Next-Generation Sequencing Into Ecological Network Analysis. Advances in Ecological Research, 2018, 58, 1-62.	2.7	68
18	How lifeâ€history traits affect ecosystem properties: effects of dispersal in metaâ€ecosystems. Oikos, 2017, 126, 532-546.	2.7	54

#	Article	IF	Citations
19	mangal – making ecological network analysis simple. Ecography, 2016, 39, 384-390.	4.5	53
20	ASYMMETRIC PATCH SIZE DISTRIBUTION LEADS TO DISRUPTIVE SELECTION ON DISPERSAL. Evolution; International Journal of Organic Evolution, 2011, 65, 490-500.	2.3	52
21	Urbanization drives an early spring for plants but not for pollinators. Oikos, 2020, 129, 1681-1691.	2.7	51
22	Networking Agroecology. Advances in Ecological Research, 2013, , 1-67.	2.7	50
23	Assessing metacommunity processes through signatures in spatiotemporal turnover of community composition. Ecology Letters, 2020, 23, 1330-1339.	6.4	47
24	Constraints on food chain length arising from regional metacommunity dynamics. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3042-3049.	2.6	46
25	Unifying macroecology and macroevolution to answer fundamental questions about biodiversity. Global Ecology and Biogeography, 2019, 28, 1925-1936.	5.8	44
26	10 Years Later. Advances in Ecological Research, 2015, 53, 1-53.	2.7	43
27	Effect of pollination strategy, phylogeny and distribution on pollination niches of Euroâ€Mediterranean orchids. Journal of Ecology, 2019, 107, 478-490.	4.0	43
28	A Neutral Theory for Interpreting Correlations between Species and Genetic Diversity in Communities. American Naturalist, 2015, 185, 59-59.	2.1	42
29	The contribution of species–genetic diversity correlations to the understanding of community assembly rules. Oikos, 2017, 126, 759-771.	2.7	42
30	Cancer and life-history traits: lessons from host–parasite interactions. Parasitology, 2016, 143, 533-541.	1.5	40
31	Traditional Amerindian cultivators combine directional and ideotypic selection for sustainable management of cassava genetic diversity. Journal of Evolutionary Biology, 2009, 22, 1317-1325.	1.7	37
32	The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes. Journal of Animal Ecology, 2007, 76, 538-551.	2.8	36
33	EVOLUTIONARY SYNDROMES LINKING DISPERSAL AND MATING SYSTEM: THE EFFECT OF AUTOCORRELATION IN POLLINATION CONDITIONS. Evolution; International Journal of Organic Evolution, 2011, 65, 591-598.	2.3	35
34	Estimating consensus and associated uncertainty between inherently different species distribution models. Methods in Ecology and Evolution, 2013, 4, 442-452.	5.2	34
35	Reciprocal immune benefit based on complementary production of antibiotics by the leech Hirudo verbana and its gut symbiont Aeromonas veronii. Scientific Reports, 2015, 5, 17498.	3.3	34
36	The Robustness of Plant-Pollinator Assemblages: Linking Plant Interaction Patterns and Sensitivity to Pollinator Loss. PLoS ONE, 2015, 10, e0117243.	2.5	34

#	Article	IF	Citations
37	Diet and Genotype of an Aquatic Invertebrate Affect the Composition of Free-Living Microbial Communities. Frontiers in Microbiology, 2020, 11, 380.	3.5	32
38	Conceptualizing ecosystem services using social–ecological networks. Trends in Ecology and Evolution, 2022, 37, 211-222.	8.7	32
39	Evolution of dispersal in spatially and temporally variable environments: The importance of life cycles. Evolution; International Journal of Organic Evolution, 2015, 69, 1925-1937.	2.3	30
40	Advancing biological invasion hypothesis testing using functional diversity indices. Science of the Total Environment, 2022, 834, 155102.	8.0	29
41	Changes in phytophagous insect host ranges following the invasion of their community: Longâ€term data for fruit flies. Ecology and Evolution, 2017, 7, 5181-5190.	1.9	27
42	The metapopulation fitness criterion: Proof and perspectives. Theoretical Population Biology, 2009, 75, 183-200.	1.1	25
43	Networking agrobiodiversity management to foster biodiversity-based agriculture. A review. Agronomy for Sustainable Development, 2021, 41, 1.	5.3	25
44	WHEN SHOULD WE EXPECT THE EVOLUTIONARY ASSOCIATION OF SELFâ€FERTILIZATION AND DISPERSAL?. Evolution; International Journal of Organic Evolution, 2011, 65, 1217-1220.	2.3	24
45	Worms' Antimicrobial Peptides. Marine Drugs, 2019, 17, 512.	4.6	24
46	A unified model of species abundance, genetic diversity, and functional diversity reveals the mechanisms structuring ecological communities. Molecular Ecology Resources, 2021, 21, 2782-2800.	4.8	24
47	The evolution of the competition–dispersal trade-off affects α- and β-diversity in a heterogeneous metacommunity. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160548.	2.6	23
48	Geometrical envelopes: Extending graphical contemporary niche theory to communities and eco-evolutionary dynamics. Journal of Theoretical Biology, 2016, 407, 271-289.	1.7	22
49	Interaction Networks in Agricultural Landscape Mosaics. Advances in Ecological Research, 2013, , 291-338.	2.7	21
50	How biased is our perception of plant-pollinator networks? A comparison of visit- and pollen-based representations of the same networks. Acta Oecologica, 2020, 105, 103551.	1.1	20
51	Host manipulation by cancer cells: Expectations, facts, and therapeutic implications. BioEssays, 2016, 38, 276-285.	2.5	19
52	Consequences of information use in breeding habitat selection on the evolution of settlement time. Oikos, 2015, 124, 69-80.	2.7	18
53	Persistence of Plants and Pollinators in the Face of Habitat Loss. Advances in Ecological Research, 2015, 53, 201-257.	2.7	17
54	Disentangling the co-structure of multilayer interaction networks: degree distribution and module composition in two-layer bipartite networks. Scientific Reports, 2017, 7, 15465.	3.3	16

#	Article	IF	Citations
55	Does phenology explain plant–pollinator interactions at different latitudes? An assessment of its explanatory power in plant–hoverfly networks in French calcareous grasslands. Oikos, 2020, 129, 753-765.	2.7	16
56	Metastasis and the evolution of dispersal. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192186.	2.6	12
57	Arthropod diversity is governed by bottom-up and top-down forces in a tropical agroecosystem. Agriculture, Ecosystems and Environment, 2019, 285, 106623.	5.3	11
58	Antagonistic evolution of an antibiotic and its molecular chaperone: how to maintain a vital ectosymbiosis in a highly fluctuating habitat. Scientific Reports, 2017, 7, 1454.	3.3	10
59	Plant Strategies along Resource Gradients. American Naturalist, 2018, 192, 360-378.	2.1	10
60	Seasonal trajectories of plant-pollinator interaction networks differ following phenological mismatches along an urbanization gradient. Landscape and Urban Planning, 2022, 226, 104512.	7.5	10
61	Do animal personalities emerge?. Nature, 2008, 451, E8-E9.	27.8	9
62	A framework to compare theoretical predictions on trait evolution in temporally varying environments under different life cycles. Ecological Complexity, 2013, 16, 9-19.	2.9	9
63	A Network-Based Method to Detect Patterns of Local Crop Biodiversity. Advances in Ecological Research, 2015, , 259-320.	2.7	9
64	Immune failure reveals vulnerability of populations exposed to pollution in the bioindicator species Hediste diversicolor. Science of the Total Environment, 2018, 613-614, 1527-1542.	8.0	9
65	A methodological framework to analyse determinants of host–microbiota networks, with an application to the relationships between <i>Daphnia magna'</i> s gut microbiota and bacterioplankton. Journal of Animal Ecology, 2021, 90, 102-119.	2.8	8
66	Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit flies. Ecology Letters, 2021, 24, 1905-1916.	6.4	8
67	Habitat selection and the value of information in heterogenous landscapes. Oikos, 2019, 128, 457-467.	2.7	7
68	Once upon a time in the far south: Influence of local drivers and functional traits on plant invasion in the harsh subâ€Antarctic islands. Journal of Vegetation Science, 2021, 32, e13057.	2.2	7
69	Do Social–Ecological Syndromes Predict Outcomes for Ecosystem Services? – a Reply to Bodin et al Trends in Ecology and Evolution, 2017, 32, 549-552.	8.7	6
70	Contrasting predation services of predator and omnivore diversity mediated by invasive ants in a tropical agroecosystem. Basic and Applied Ecology, 2017, 18, 31-39.	2.7	6
71	Transgenerational Immune Priming in the Field: Maternal Environmental Experience Leads to Differential Immune Transfer to Oocytes in the Marine Annelid Hediste diversicolor. Genes, 2019, 10, 989.	2.4	6
72	Investigation of Capitella spp. symbionts in the context of varying anthropic pressures: First occurrence of a transient advantageous epibiosis with the giant bacteria Thiomargarita sp. to survive seasonal increases of sulfides in sediments. Science of the Total Environment, 2021, 798, 149149.	8.0	5

#	Article	IF	Citations
73	Coupling ecological network analysis with high-throughput sequencing-based surveys: Lessons from the next-generation biomonitoring project. Advances in Ecological Research, 2021, 65, 367-430.	2.7	5
74	Fruit fly phylogeny imprints bacterial gut microbiota. Evolutionary Applications, 2022, 15, 1621-1638.	3.1	5
75	Geographical variation of floral scents in generalist entomophilous species with variable pollinator communities. Functional Ecology, 2022, 36, 763-778.	3.6	4
76	Genetic diversification and life-cycle of the polychaete Capitella spp. from the English Channel: evidence for sympatric cryptic species and alternative reproductive strategies. Marine Biology, 2021, 168, 1.	1.5	2
77	The distribution and impact of an invasive plant species (Senecio inaequidens) on a dune building engineer (Calamagrostis arenaria). NeoBiota, 0, 72, 1-23.	1.0	2
78	Resurrecting Shannon's surprise: landscape heterogeneity complements information use and population growth. Oikos, 2022, 2022, .	2.7	2
79	Network analysis highlights increased generalisation and evenness of plant-pollinator interactions after conservation measures. Acta Oecologica, 2021, 110, 103689.	1.1	1