
Jiang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4358243/publications.pdf Version: 2024-02-01

LIANC 7HAO

#	Article	IF	CITATIONS
1	A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon, 2020, 156, 506-513.	10.3	235
2	A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes. Biosensors and Bioelectronics, 2013, 47, 86-91.	10.1	91
3	Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon, 2013, 58, 92-98.	10.3	56
4	Solid organic acid tetrafluorohydroquinone functionalized single-walled carbon nanotube chemiresistive sensors for highly sensitive and selective formaldehyde detection. Sensors and Actuators B: Chemical, 2013, 177, 370-375.	7.8	44
5	Co3O4 nanoparticles embedded in laser-induced graphene for a flexible and highly sensitive enzyme-free glucose biosensor. Sensors and Actuators B: Chemical, 2021, 347, 130653.	7.8	42
6	Continuous and low-cost synthesis of high-quality multi-walled carbon nanotubes by arc discharge in air. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1639-1643.	2.7	40
7	Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene. Scientific Reports, 2013, 3, 2636.	3.3	40
8	Highly sensitive detection of trinitrotoluene in water by chemiresistive sensor based on noncovalently amino functionalized single-walled carbon nanotube. Sensors and Actuators B: Chemical, 2014, 190, 529-534.	7.8	33
9	Versatile Strategy to Design Flexible Planar-Integrated Microsupercapacitors Based on Co ₃ O ₄ -Decorated Laser-Induced Graphene. ACS Applied Energy Materials, 2020, 3, 10676-10684.	5.1	32
10	Gas Sensors Based on Chemically Reduced Holey Graphene Oxide Thin Films. Nanoscale Research Letters, 2019, 14, 218.	5.7	29
11	Highly-sensitive NO2 gas sensors based on three-dimensional nanotube graphene and ZnO nanospheres nanocomposite at room temperature. Applied Surface Science, 2021, 566, 150720.	6.1	29
12	Flash foam stamp-inspired fabrication of flexible in-plane graphene integrated micro-supercapacitors on paper. Journal of Power Sources, 2019, 433, 226703.	7.8	28
13	Preparation and characterization of LiTi2O4 anode material synthesized by one-step solid-state reaction. Ionics, 2010, 16, 425-429.	2.4	27
14	Large-scale synthesis of few-walled carbon nanotubes by DC arc discharge in low-pressure flowing air. Materials Research Bulletin, 2013, 48, 3232-3235.	5.2	27
15	Synthesis of straight multi-walled carbon nanotubes by arc discharge in air and their field emission properties. Journal of Materials Science, 2012, 47, 6535-6541.	3.7	26
16	Boosting the performance of flexible in-plane micro-supercapacitors by engineering MoS2 nanoparticles embedded in laser-induced graphene. Journal of Alloys and Compounds, 2021, 887, 161514.	5.5	26
17	Effective design of MnO2 nanoparticles embedded in laser-induced graphene as shape-controllable electrodes for flexible planar microsupercapacitors. Applied Surface Science, 2022, 571, 151385.	6.1	26
18	Structural improvement of CVD multi-walled carbon nanotubes by a rapid annealing process. Diamond and Related Materials, 2012, 25, 24-28.	3.9	25

JIANG ZHAO

#	Article	IF	CITATIONS
19	Novel multi-walled carbon nanotubes-embedded laser-induced graphene in crosslinked architecture for highly responsive asymmetric pressure sensor. Sensors and Actuators A: Physical, 2021, 323, 112658.	4.1	21
20	Functionalized self-assembled monolayers on mesoporous silica nanoparticles with high surface coverage. Nanoscale Research Letters, 2012, 7, 334.	5.7	20
21	A novel high-speed CMOS fully-differentical ring VCO. , 2014, , .		20
22	One-pot preparation of thin nanoporous copper foils with enhanced light absorption and SERS properties. CrystEngComm, 2015, 17, 1296-1304.	2.6	20
23	Highly enhanced gas sensing in single-walled carbon nanotube-based thin-film transistor sensors by ultraviolet light irradiation. Nanoscale Research Letters, 2012, 7, 644.	5.7	18
24	A facile one-step synthesis of p-CuO/n-ZnO nanowire heterojunctions by thermal oxidation route. Materials Science in Semiconductor Processing, 2015, 35, 55-58.	4.0	18
25	Magnetic-field-induced diameter-selective synthesis of single-walled carbon nanotubes. Nanoscale, 2012, 4, 1717.	5.6	17
26	Highly responsive screen-printed asymmetric pressure sensor based on laser-induced graphene. Journal of Micromechanics and Microengineering, 2022, 32, 015002.	2.6	15
27	Double-nucleation hydrothermal growth of dense and large-scale ZnO nanorod arrays with high aspect ratio on zinc substrate for stable photocatalytic property. Materials Letters, 2013, 107, 251-254.	2.6	11
28	Research on the Electrical-Thermal-Acoustic Conversion Behavior of Thermoacoustic Speakers Based on Multilayer Graphene Film. IEEE Sensors Journal, 2020, 20, 14646-14654.	4.7	11
29	Highly Responsive Asymmetric Pressure Sensor Based on MXene/Reduced Graphene Oxide Nanocomposite Fabricated by Laser Scribing Technique. IEEE Sensors Journal, 2021, 21, 26673-26680.	4.7	9
30	One-Step Cutting of Multi-Walled Carbon Nanotubes Using Nanoscissors. Nano-Micro Letters, 2011, 3, 86-90.	27.0	8
31	Enhanced Field Emission from UV-Illuminated CuO Nanowires Fabricated by Thermal Oxidation of Cu Film. Nano, 2016, 11, 1650056.	1.0	7
32	Flexible Planarâ€Integrated Microâ€5upercapacitors from Electrochemically Exfoliated Graphene as Advanced Electrodes Prepared by Flash Foam–Assisted Stamp Technique on Paper. Energy Technology, 2019, 7, 1900664.	3.8	7
33	Doping of vanadium to nanocrystalline diamond films by hot filament chemical vapor deposition. Nanoscale Research Letters, 2012, 7, 441.	5.7	6
34	An In-Line Microwave Power Detection System Based on Double MEMS Cantilever Beams. IEEE Sensors Journal, 2020, 20, 10476-10484.	4.7	5
35	A 10-bit 100 MS/s CMOS current-steering DAC. , 2016, , .		4
36	Fe 3 O 4 Nanoparticles Supported on Arcâ€synthesized Carbon Nanotubes as Advanced Electrocatalyst for Oxygen Reduction Reaction. ChemistrySelect, 2019, 4, 6227-6232.	1.5	3

JIANG ZHAO

#	Article	IF	CITATIONS
37	Free-binder lithium ion battery based on a hybrid multiwalled carbon nanotube-graphitic platelet architecture. Ionics, 2015, 21, 1247-1252.	2.4	2
38	Rapid Structural Improvement of CVD-Grown Multi-Walled Carbon Nanotubes by Drastic Thermite Reaction. Nano, 2015, 10, 1550112.	1.0	2
39	The research of indirectly-heated type microwave power sensors based on GaAs MMIC technology. Microsystem Technologies, 2016, 22, 2233-2239.	2.0	2
40	Preparation of LiTi2O4 as a Lithium-ion Battery Anode by a Carbon-thermal Reduction Method. International Journal of Electrochemical Science, 2018, , 1921-1930.	1.3	2
41	Optimization of Thermoelectric Microwave Power Sensors Based on Thinâ€Membrane Structure. Chinese Journal of Electronics, 2015, 24, 884-888.	1.5	1
42	Optical sensing interface based on nano-opto-electro-mechanical systems. Sensors and Actuators A: Physical, 2019, 295, 374-379.	4.1	1
43	Investigation on the theoretical model of graphene pressure sensors. Electronics Letters, 2020, 56, 447-449.	1.0	1
44	A Σ-Δ fractional-N frequency synthesizer in 0.18µM CMOS technology. , 2014, , .		0
45	A Flexible Low-Pass Filter Based on Laser-Induced Graphene. Journal of Electronic Materials, 2020, 49, 6348-6357.	2.2	0
46	Research on Frequency Doubling Effect of Thermoacoustic Speaker Based on Graphene Film. Sensors, 2021, 21, 6030.	3.8	0