
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4358140/publications.pdf Version: 2024-02-01

Διεν Ηλινιλι

#	Article	IF	CITATIONS
1	Epidermal Growth Factor Signaling Promotes Sleep through a Combined Series and Parallel Neural Circuit. Current Biology, 2020, 30, 1-16.e13.	3.9	264
2	Notch Inhibition of RAS Signaling Through MAP Kinase Phosphatase LIP-1 During <i>C. elegans</i> Vulval Development. Science, 2001, 291, 1055-1058.	12.6	240
3	Remarkably Divergent Regions Punctuate the Genome Assembly of the <i>Caenorhabditis elegans</i> Hawaiian Strain CB4856. Genetics, 2015, 200, 975-989.	2.9	136
4	The <i>Caenorhabditis elegans</i> APC-related gene <i>apr-1</i> is required for epithelial cell migration and <i>Hox</i> gene expression. Genes and Development, 2000, 14, 874-886.	5.9	95
5	Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development. PLoS Computational Biology, 2007, 3, e92.	3.2	88
6	The C. elegans homolog of the mammalian tumor suppressor Dep-1/Scc1 inhibits EGFR signaling to regulate binary cell fate decisions. Genes and Development, 2005, 19, 1328-1340.	5.9	78
7	Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA. PLoS Genetics, 2015, 11, e1005236.	3.5	58
8	Neuron-Specific Regulation of Associative Learning and Memory by MAGI-1 in C. elegans. PLoS ONE, 2009, 4, e6019.	2.5	55
9	EGF Signal Propagation during C. elegans Vulval Development Mediated by ROM-1 Rhomboid. PLoS Biology, 2004, 2, e334.	5.6	52
10	The C.elegans MAPK phosphatase LIP-1 is required for the G2/M meiotic arrest of developing oocytes. EMBO Journal, 2002, 21, 4317-4326.	7.8	51
11	Regulation of anchor cell invasion and uterine cell fates by the egl-43 Evi-1 proto-oncogene in Caenorhabditis elegans. Developmental Biology, 2007, 308, 187-195.	2.0	48
12	Cell fate-specific regulation of EGF receptor trafficking during Caenorhabditis elegans vulval development. EMBO Journal, 2006, 25, 2347-2357.	7.8	46
13	PTEN Negatively Regulates MAPK Signaling during Caenorhabditis elegans Vulval Development. PLoS Genetics, 2012, 8, e1002881.	3.5	40
14	Cell ycle regulation of NOTCH signaling during <i>C. elegans</i> vulval development. Molecular Systems Biology, 2012, 8, 618.	7.2	39
15	A Conserved Function of C. elegans CASY-1 Calsyntenin in Associative Learning. PLoS ONE, 2009, 4, e4880.	2.5	38
16	Ras/MAPK Modifier Loci Revealed by eQTL in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2017, 7, 3185-3193.	1.8	38
17	TheC. elegansG-protein-coupled receptor SRA-13 inhibits RAS/MAPK signalling during olfaction and vulval development. Development (Cambridge), 2003, 130, 2567-2577.	2.5	37
18	Signal transduction during C. elegans vulval development: a NeverEnding story. Current Opinion in Genetics and Development, 2015, 32, 1-9.	3.3	36

#	Article	IF	CITATIONS
19	An In Vivo EGF Receptor Localization Screen in C. elegans Identifies the Ezrin Homolog ERM-1 as a Temporal Regulator of Signaling. PLoS Genetics, 2014, 10, e1004341.	3.5	34
20	WormQTL—public archive and analysis web portal for natural variation data in Caenorhabditis spp. Nucleic Acids Research, 2012, 41, D738-D743.	14.5	33
21	Long-term <i>C. elegans</i> immobilization enables high resolution developmental studies <i>in vivo</i> . Lab on A Chip, 2018, 18, 1359-1368.	6.0	30
22	The Caenorhabditis elegans homologue of the protoâ€oncogene ectâ€2 positively regulates RAS signalling during vulval development. EMBO Reports, 2005, 6, 1169-1175.	4.5	29
23	Coordinated Lumen Contraction and Expansion during Vulval Tube Morphogenesis in Caenorhabditis elegans. Developmental Cell, 2012, 23, 494-506.	7.0	29
24	Distinct roles of the Pumilio and FBF translational repressors during C. elegans vulval development. Development (Cambridge), 2006, 133, 3461-3471.	2.5	22
25	LIN-39 and the EGFR/RAS/MAPK pathway regulate <i>C. elegans</i> vulval morphogenesis via the VAB-23 zinc finger protein. Development (Cambridge), 2011, 138, 4649-4660.	2.5	22
26	Loss-of-function of β-catenin bar-1 slows development and activates the Wnt pathway in Caenorhabditis elegans. Scientific Reports, 2014, 4, 4926.	3.3	22
27	A universal method for automated gene mapping. Genome Biology, 2005, 6, R19.	9.6	21
28	The C. elegans MAGI-1 protein is a novel component of cell junctions that is required for junctional compartmentalization. Developmental Biology, 2011, 350, 24-31.	2.0	19
29	The Caenorhabditis elegans homolog of the Evi1 proto-oncogene, egl-43, coordinates G1 cell cycle arrest with pro-invasive gene expression during anchor cell invasion. PLoS Genetics, 2020, 16, e1008470.	3.5	19
30	Microfluidic-based imaging of complete <i>Caenorhabditis elegans</i> larval development. Development (Cambridge), 2021, 148, .	2.5	19
31	The Invading Anchor Cell Induces Lateral Membrane Constriction during Vulval Lumen Morphogenesis in C.Âelegans. Developmental Cell, 2017, 42, 271-285.e3.	7.0	17
32	β-Integrin de-phosphorylation by the Density-Enhanced Phosphatase DEP-1 attenuates EGFR signaling in C. elegans. PLoS Genetics, 2017, 13, e1006592.	3.5	17
33	Suppression of ras-mediated transformation. Advances in Enzyme Regulation, 1993, 33, 267-272.	2.6	14
34	The hypoxia-response pathway modulates RAS/MAPK–mediated cell fate decisions in <i>Caenorhabditis elegans</i> . Life Science Alliance, 2019, 2, e201800255.	2.8	14
35	Tissue-specific functions of the Caenorhabditis elegans p120 Ras GTPase activating protein GAP-3. Developmental Biology, 2008, 323, 166-176.	2.0	12
36	Emergent Stem Cell Homeostasis in the C.Âelegans Germline Is Revealed by Hybrid Modeling. Biophysical Journal, 2015, 109, 428-438.	0.5	12

#	Article	lF	CITATIONS
37	The Caenorhabditis elegans homolog of the Opitz syndrome gene, madd-2/Mid1, regulates anchor cell invasion during vulval development. Developmental Biology, 2013, 374, 108-114.	2.0	10
38	The C. elegans hox gene lin-39 controls cell cycle progression during vulval development. Developmental Biology, 2016, 418, 124-134.	2.0	9
39	Reciprocal EGFR signaling in the anchor cell ensures precise inter-organ connection during <i>Caenorhabditis elegans</i> vulval morphogenesis. Development (Cambridge), 2022, 149, .	2.5	8
40	Fine-Tuning the RAS Signaling Pathway. Molecular Cell, 2002, 9, 927-928.	9.7	7
41	Polarized epidermal growth factor secretion ensures robust vulval cell fate specification in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2020, 147, .	2.5	7
42	A DNA replication-independent function of pre-replication complex genes during cell invasion in C. elegans. PLoS Biology, 2022, 20, e3001317.	5.6	7
43	Fluorescent dATP for DNA Synthesis <i>In Vivo</i> . ACS Chemical Biology, 2020, 15, 2996-3003.	3.4	5
44	A Dynamic Physical Model of Cell Migration, Differentiation and Apoptosis in Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 2012, 736, 211-233.	1.6	5
45	The conserved zinc finger protein VAB-23 is an essential regulator of epidermal morphogenesis in Caenorhabditis elegans. Developmental Biology, 2009, 336, 84-93.	2.0	4
46	To Divide or Invade: A Look Behind the Scenes of the Proliferation-Invasion Interplay in the Caenorhabditis elegans Anchor Cell. Frontiers in Cell and Developmental Biology, 2020, 8, 616051.	3.7	4
47	Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis. Journal of the Royal Society Interface, 2014, 11, 20140245.	3.4	3
48	FRAP Analysis of LET-23::GFP in the Vulval Epithelial Cells of Living Caenorhabditis elegans Larvae. Bio-protocol, 2015, 5, .	0.4	3
49	The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. ELife, 2020, 9, .	6.0	3
50	The transcription factor VAB-23 links vulval cell fate specification and morphogenesis. Worm, 2012, 1, 170-175.	1.0	2
51	An intimate look at LET-23 EGFR trafficking in the vulval cells of liveC. eleganslarvae. Worm, 2014, 3, e965605.	1.0	2
52	Cell Fate Determination and Signal Transduction during Caenorhabditis elegans Vulval Development. , 1999, , 157-170.		1
53	Cell cycle control of NOTCH signalling during C. elegans vulval development. Developmental Biology, 2011, 356, 186.	2.0	0
54	Predicting and Retrodicting Fate Patterns in C. elegans Vulval Development using Logic Programming. Biophysical Journal, 2014, 106, 376a.	0.5	0

#	Article	IF	CITATIONS
55	Emergent Behaviours of Stem Cells in Organogenesis Demonstrated by Hybrid Modelling. Biophysical Journal, 2015, 108, 365a.	0.5	0
56	Title is missing!. , 2020, 16, e1008470.		0
57	Title is missing!. , 2020, 16, e1008470.		0
58	Title is missing!. , 2020, 16, e1008470.		0
59	Title is missing!. , 2020, 16, e1008470.		0
60	Title is missing!. , 2020, 16, e1008470.		0
61	Title is missing!. , 2020, 16, e1008470.		0
62	Tissue-specific inhibition of protein sumoylation uncovers diverse SUMO functions during C. elegans vulval development. PLoS Genetics, 2022, 18, e1009978.	3.5	0