
Sebastian Ulbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/435722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Energy Electron Irradiation (LEEI) for the Generation of Inactivated Bacterial Vaccines. Methods in Molecular Biology, 2022, 2414, 97-113.	0.9	2
2	Serological differentiation of West Nile virus―and Usutu virusâ€induced antibodies by envelope proteins with modified crossâ€reactive epitopes. Transboundary and Emerging Diseases, 2022, 69, 2779-2787.	3.0	4
3	Low-Energy Electron Irradiation of Tick-Borne Encephalitis Virus Provides a Protective Inactivated Vaccine. Frontiers in Immunology, 2022, 13, 825702.	4.8	4
4	Selection and Validation of siRNAs Preventing Uptake and Replication of SARS-CoV-2. Frontiers in Bioengineering and Biotechnology, 2022, 10, 801870.	4.1	13
5	Correlation of humoral immune responses to different SARS-CoV-2 antigens with virus neutralizing antibodies and symptomatic severity in a German COVID-19 cohort. Emerging Microbes and Infections, 2021, 10, 774-781.	6.5	38
6	Multiplex-RT-PCR-ELISA panel for detecting mosquito-borne pathogens: Plasmodium sp. preserved and eluted from dried blood spots on sample cards. Malaria Journal, 2021, 20, 66.	2.3	5
7	The Prevalence of Coxiella burnetii in Hard Ticks in Europe and Their Role in Q Fever Transmission Revisited—A Systematic Review. Frontiers in Veterinary Science, 2021, 8, 655715.	2.2	53
8	Low Energy Electron Irradiation Is a Potent Alternative to Gamma Irradiation for the Inactivation of (CAR-)NK-92 Cells in ATMP Manufacturing. Frontiers in Immunology, 2021, 12, 684052.	4.8	11
9	Zika Virus Antibody Titers Three Years after Confirmed Infection. Viruses, 2021, 13, 1345.	3.3	7
10	Ecologic Determinants of West Nile Virus Seroprevalence among Equids, Brazil. Emerging Infectious Diseases, 2021, 27, 2466-2470.	4.3	7
11	Immunization of turkeys with a DNA vaccine expressing the haemagglutinin gene of low pathogenic avian influenza virus subtype H9N2. Journal of Virological Methods, 2020, 284, 113938.	2.1	4
12	Automated application of low energy electron irradiation enables inactivation of pathogen- and cell-containing liquids in biomedical research and production facilities. Scientific Reports, 2020, 10, 12786.	3.3	15
13	A Recombinant Zika Virus Envelope Protein with Mutations in the Conserved Fusion Loop Leads to Reduced Antibody Cross-Reactivity upon Vaccination. Vaccines, 2020, 8, 603.	4.4	10
14	Low-Energy Electron Irradiation Efficiently Inactivates the Gram-Negative Pathogen Rodentibacter pneumotropicus—A New Method for the Generation of Bacterial Vaccines with Increased Efficacy. Vaccines, 2020, 8, 113.	4.4	11
15	Rapid decline of Zika virus NS1 antigen-specific antibody responses, northeastern Brazil. Virus Genes, 2020, 56, 632-637.	1.6	10
16	Uptake and fecal excretion of Coxiella burnetii by Ixodes ricinus and Dermacentor marginatus ticks. Parasites and Vectors, 2020, 13, 75.	2.5	44
17	Immunogenicity and Protection Efficacy of a Naked Self-Replicating mRNA-Based Zika Virus Vaccine. Vaccines, 2019, 7, 96.	4.4	40
18	Differential Shedding and Antibody Kinetics of Zika and Chikungunya Viruses, Brazil. Emerging Infectious Diseases, 2019, 25, 311-315.	4.3	26

SEBASTIAN ULBERT

#	Article	IF	CITATIONS
19	West Nile virus vaccines – current situation and future directions. Human Vaccines and Immunotherapeutics, 2019, 15, 2337-2342.	3.3	68
20	Specific detection and differentiation of tickâ€borne encephalitis and West Nile virus induced IgG antibodies in humans and horses. Transboundary and Emerging Diseases, 2019, 66, 1701-1708.	3.0	15
21	Eimeria tenella oocysts attenuated by low energy electron irradiation (LEEI) induce protection against challenge infection in chickens. Veterinary Parasitology, 2019, 266, 18-26.	1.8	12
22	Dengue Virus IgM Serotyping by ELISA with Recombinant Mutant Envelope Proteins. Emerging Infectious Diseases, 2019, 25, 1111-1115.	4.3	9
23	Immunization with an adjuvanted low-energy electron irradiation inactivated respiratory syncytial virus vaccine shows immunoprotective activity in mice. Vaccine, 2018, 36, 1561-1569.	3.8	18
24	Exhaustive TORCH Pathogen Diagnostics Corroborate Zika Virus Etiology of Congenital Malformations in Northeastern Brazil. MSphere, 2018, 3, .	2.9	17
25	High Zika Virus Seroprevalence in Salvador, Northeastern Brazil Limits the Potential for Further Outbreaks. MBio, 2017, 8, .	4.1	183
26	Specific detection of dengue and Zika virus antibodies using envelope proteins with mutations in the conserved fusion loop. Emerging Microbes and Infections, 2017, 6, 1-9.	6.5	37
27	Evidence for Congenital Zika Virus Infection From Neutralizing Antibody Titers in Maternal Sera, Northeastern Brazil. Journal of Infectious Diseases, 2017, 216, 1501-1504.	4.0	23
28	Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses. Viruses, 2016, 8, 319.	3.3	39
29	A method to identify protein antigens of Dermanyssus gallinae for the protection of birds from poultry mites. Parasitology Research, 2016, 115, 2705-2713.	1.6	13
30	DNA vaccines encoding the envelope protein of West Nile virus lineages 1 or 2 administered intramuscularly, via electroporation and with recombinant virus protein induce partial protection in large falcons (Falco spp.). Veterinary Research, 2015, 46, 87.	3.0	6
31	Recombinant Envelope-Proteins with Mutations in the Conserved Fusion Loop Allow Specific Serological Diagnosis of Dengue-Infections. PLoS Neglected Tropical Diseases, 2015, 9, e0004218.	3.0	27
32	Latest developments and challenges in the diagnosis of human West Nile virus infection. Expert Review of Anti-Infective Therapy, 2015, 13, 327-342.	4.4	39
33	Improvement of DNA vaccination by adjuvants and sophisticated delivery devices: vaccine-platforms for the battle against infectious diseases. Clinical and Experimental Vaccine Research, 2015, 4, 1.	2.2	78
34	Vaccination of Mice Using the West Nile Virus E-Protein in a DNA Prime-Protein Boost Strategy Stimulates Cell-Mediated Immunity and Protects Mice against a Lethal Challenge. PLoS ONE, 2014, 9, e87837.	2.5	32
35	AUF1 p45 Promotes West Nile Virus Replication by an RNA Chaperone Activity That Supports Cyclization of the Viral Genome. Journal of Virology, 2014, 88, 11586-11599.	3.4	49
36	Experimental Infection of Rhesus Macaques and Common Marmosets with a European Strain of West Nile Virus. PLoS Neglected Tropical Diseases, 2014, 8, e2797.	3.0	19

SEBASTIAN ULBERT

#	Article	IF	CITATIONS
37	Technologies for the development of West Nile virus vaccines. Future Microbiology, 2014, 9, 1221-1232.	2.0	15
38	Matrix-Mâ,,¢ adjuvanted envelope protein vaccine protects against lethal lineage 1 and 2 West Nile virus infection in mice. Vaccine, 2014, 32, 800-808.	3.8	28
39	Distinguishing West Nile virus infection using a recombinant envelope protein with mutations in the conserved fusion-loop. BMC Infectious Diseases, 2014, 14, 246.	2.9	32
40	Isolation of West Nile Virus from Urine Samples of Patients with Acute Infection. Journal of Clinical Microbiology, 2014, 52, 3411-3413.	3.9	41
41	Vaccine-Induced Protection of Rhesus Macaques against Plasma Viremia after Intradermal Infection with a European Lineage 1 Strain of West Nile Virus. PLoS ONE, 2014, 9, e112568.	2.5	13
42	T Cell Epitope Mapping of the E-Protein of West Nile Virus in BALB/c Mice. PLoS ONE, 2014, 9, e115343.	2.5	7
43	Antibody Responses in Humans Infected with Newly Emerging Strains of West Nile Virus in Europe. PLoS ONE, 2013, 8, e66507.	2.5	14
44	Recent progress in West Nile virus diagnosis and vaccination. Veterinary Research, 2012, 43, 16.	3.0	125
45	A DNA vaccine encoding the E protein of West Nile Virus is protective and can be boosted by recombinant domain DIII. Vaccine, 2011, 29, 6352-6357.	3.8	36
46	West Nile Virus: The Complex Biology of an Emerging Pathogen. Intervirology, 2011, 54, 171-184.	2.8	36
47	Synergistic effects between natural histone mixtures and polyethylenimine in non-viral gene delivery in vitro. International Journal of Pharmaceutics, 2010, 400, 86-95.	5.2	13
48	RNA interference protects horse cells in vitro from infection with Equine Arteritis Virus. Antiviral Research, 2009, 81, 209-216.	4.1	5
49	The inner nuclear membrane protein Lem2 is critical for normal nuclear envelope morphology. FEBS Letters, 2006, 580, 6435-6441.	2.8	56
50	Direct membrane protein–DNA interactions required early in nuclear envelope assembly. Journal of Cell Biology, 2006, 173, 469-476.	5.2	102