Michael A Caligiuri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4356619/publications.pdf

Version: 2024-02-01

28274 15732 17,770 134 55 125 citations h-index g-index papers 139 139 139 19430 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The biology of human natural killer-cell subsets. Trends in Immunology, 2001, 22, 633-640.	6.8	2,520
2	Human natural killer cells. Blood, 2008, 112, 461-469.	1.4	1,572
3	Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood, 2001, 97, 3146-3151.	1.4	1,201
4	Interleukin 15: biology and relevance to human disease. Blood, 2001, 97, 14-32.	1.4	851
5	Obesity, Inflammation, and Cancer. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 421-449.	22.4	570
6	Coordinated and Distinct Roles for IFN- $\hat{l}\pm\hat{l}^2$, IL-12, and IL-15 Regulation of NK Cell Responses to Viral Infection. Journal of Immunology, 2002, 169, 4279-4287.	0.8	544
7	The Broad Spectrum of Human Natural Killer Cell Diversity. Immunity, 2017, 47, 820-833.	14.3	485
8	Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood, 2002, 100, 1935-1947.	1.4	449
9	Human natural killer cell development. Immunological Reviews, 2006, 214, 56-72.	6.0	405
10	In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood, 2002, 100, 3633-3638.	1.4	382
11	Evidence for discrete stages of human natural killer cell differentiation in vivo. Journal of Experimental Medicine, 2006, 203, 1033-1043.	8.5	370
12	Preclinical characterization of 1-7F9, a novel human anti–KIR receptor therapeutic antibody that augments natural killer–mediated killing of tumor cells. Blood, 2009, 114, 2667-2677.	1.4	363
13	Fatal Leukemia in Interleukin 15 Transgenic Mice Follows Early Expansions in Natural Killer and Memory Phenotype Cd8+ T Cells. Journal of Experimental Medicine, 2001, 193, 219-232.	8.5	335
14	A Human CD34(+) Subset Resides in Lymph Nodes and Differentiates into CD56brightNatural Killer Cells. Immunity, 2005, 22, 295-304.	14.3	331
15	Location and cellular stages of natural killer cell development. Trends in Immunology, 2013, 34, 573-582.	6.8	288
16	Ibrutinib treatment improves T cell number and function in CLL patients. Journal of Clinical Investigation, 2017, 127, 3052-3064.	8.2	280
17	CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells. Scientific Reports, 2015, 5, 11483.	3.3	270
18	Interleukin-2, Interleukin-15, and Their Roles in Human Natural Killer Cells. Advances in Immunology, 2005, 86, 209-239.	2.2	260

#	Article	IF	Citations
19	Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature, 2019, 572, 254-259.	27.8	246
20	Pro- and Antiinflammatory Cytokine Signaling: Reciprocal Antagonism Regulates Interferon-gamma Production by Human Natural Killer Cells. Immunity, 2006, 24, 575-590.	14.3	235
21	CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood, 2010, 115, 274-281.	1.4	228
22	A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood, 2012, 120, 4324-4333.	1.4	217
23	The Mechanism of Anti–PD-L1 Antibody Efficacy against PD-L1–Negative Tumors Identifies NK Cells Expressing PD-L1 as a Cytolytic Effector. Cancer Discovery, 2019, 9, 1422-1437.	9.4	210
24	TGF- \hat{l}^2 Utilizes SMAD3 to Inhibit CD16-Mediated IFN- \hat{l}^3 Production and Antibody-Dependent Cellular Cytotoxicity in Human NK Cells. Journal of Immunology, 2008, 181, 3784-3792.	0.8	201
25	Interleukin- $1\hat{l}^2$ Selectively Expands and Sustains Interleukin-22+ Immature Human Natural Killer Cells in Secondary Lymphoid Tissue. Immunity, 2010, 32, 803-814.	14.3	180
26	Molecular Pathways: Interleukin-15 Signaling in Health and in Cancer. Clinical Cancer Research, 2014, 20, 2044-2050.	7.0	166
27	NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nature Medicine, 2012, 18, 1827-1834.	30.7	164
28	A Progenitor Cell Expressing Transcription Factor RORÎ 3 t Generates All Human Innate Lymphoid Cell Subsets. Immunity, 2016, 44, 1140-1150.	14.3	153
29	Aberrant Overexpression of IL-15 Initiates Large Granular Lymphocyte Leukemia through Chromosomal Instability and DNA Hypermethylation. Cancer Cell, 2012, 22, 645-655.	16.8	150
30	Myeloid-Derived Suppressor Cells Express Bruton's Tyrosine Kinase and Can Be Depleted in Tumor-Bearing Hosts by Ibrutinib Treatment. Cancer Research, 2016, 76, 2125-2136.	0.9	150
31	Epitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with endemic human coronaviruses. Cell Reports Medicine, 2021, 2, 100189.	6.5	149
32	Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2 /neu-positive breast cancer cells. European Journal of Immunology, 2001, 31, 3016-3025.	2.9	141
33	Transcription Factor Foxo1 Is a Negative Regulator of Natural Killer Cell Maturation and Function. Immunity, 2015, 42, 457-470.	14.3	141
34	Human natural killer cell development in secondary lymphoid tissues. Seminars in Immunology, 2014, 26, 132-137.	5.6	126
35	Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. Journal of Hematology and Oncology, 2020, 13, 168.	17.0	114
36	Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells. Frontiers in Immunology, 2017, 8, 360.	4.8	112

#	Article	IF	CITATIONS
37	Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH17 cytokine interleukin-22. Blood, 2009, 113, 4008-4010.	1.4	108
38	Blocking the CCL2–CCR2 Axis Using CCL2-Neutralizing Antibody Is an Effective Therapy for Hepatocellular Cancer in a Mouse Model. Molecular Cancer Therapeutics, 2017, 16, 312-322.	4.1	101
39	NKp80 Defines a Critical Step during Human Natural Killer Cell Development. Cell Reports, 2016, 16, 379-391.	6.4	100
40	An Oncolytic Virus Expressing IL15/IL15RÎ \pm Combined with Off-the-Shelf EGFR-CAR NK Cells Targets Glioblastoma. Cancer Research, 2021, 81, 3635-3648.	0.9	89
41	CD56 Expression Marks Human Group 2 Innate Lymphoid Cell Divergence from a Shared NK Cell and Group 3 Innate Lymphoid Cell Developmental Pathway. Immunity, 2018, 49, 464-476.e4.	14.3	86
42	The Transcription Factor AHR Prevents the Differentiation of a Stage 3 Innate Lymphoid Cell Subset to Natural Killer Cells. Cell Reports, 2014, 8, 150-162.	6.4	84
43	The K18-Human ACE2 Transgenic Mouse Model Recapitulates Non-severe and Severe COVID-19 in Response to an Infectious Dose of the SARS-CoV-2 Virus. Journal of Virology, 2022, 96, JVI0096421.	3.4	84
44	A CS1-NKG2D Bispecific Antibody Collectively Activates Cytolytic Immune Cells against Multiple Myeloma. Cancer Immunology Research, 2018, 6, 776-787.	3.4	83
45	The IL-15–AKT–XBP1s signaling pathway contributes to effector functions and survival in human NK cells. Nature Immunology, 2019, 20, 10-17.	14.5	83
46	The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. Journal of Experimental Medicine, $2021, 218, \ldots$	8.5	82
47	Decitabine enhances anti-CD33 monoclonal antibody BI 836858–mediated natural killer ADCC against AML blasts. Blood, 2016, 127, 2879-2889.	1.4	80
48	IL-18 Drives ILC3 Proliferation and Promotes IL-22 Production via NF-κB. Journal of Immunology, 2017, 199, 2333-2342.	0.8	80
49	Mechanism, Consequences, and Therapeutic Targeting of Abnormal IL15 Signaling in Cutaneous T-cell Lymphoma. Cancer Discovery, 2016, 6, 986-1005.	9.4	79
50	Evidence for a stepwise program of extrathymic T cell development within the human tonsil. Journal of Clinical Investigation, 2012, 122, 1403-1415.	8.2	77
51	Biallelic mutations in IRF8 impair human NK cell maturation and function. Journal of Clinical Investigation, 2016, 127, 306-320.	8.2	76
52	TGFÎ ² Treatment Enhances Glioblastoma Virotherapy by Inhibiting the Innate Immune Response. Cancer Research, 2015, 75, 5273-5282.	0.9	75
53	Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood, 2012, 120, 1130-1136.	1.4	74
54	Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood, 2018, 132, 1792-1804.	1.4	66

#	Article	IF	Citations
55	The Axl/Gas6 pathway is required for optimal cytokine signaling during human natural killer cell development. Blood, 2009, 113, 2470-2477.	1.4	59
56	A review of the association between interleukin-10 and human B-cell malignancies. Cancer Immunology, Immunotherapy, 1998, 46, 239-244.	4.2	58
57	NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human. Journal of Clinical Investigation, 2011, 121, 1456-1470.	8.2	58
58	An oncolytic herpesvirus expressing E-cadherin improves survival in mouse models of glioblastoma. Nature Biotechnology, 2019, 37, 45-54.	17.5	56
59	An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma. Nature Communications, 2021, 12, 5908.	12.8	56
60	Echinomycin protects mice against relapsed acute myeloid leukemia without adverse effect on hematopoietic stem cells. Blood, 2014, 124, 1127-1135.	1.4	55
61	SMAD4 promotes TGF- $\hat{l}^2\hat{a}$ independent NK cell homeostasis and maturation and antitumor immunity. Journal of Clinical Investigation, 2018, 128, 5123-5136.	8.2	55
62	Restriction landmark genome scanning for aberrant methylation in primary refractory and relapsed acute myeloid leukemia; involvement of the WIT-1 gene. Oncogene, 1999, 18, 3159-3165.	5.9	54
63	Cellular pathways in the development of human and murine innate lymphoid cells. Current Opinion in Immunology, 2019, 56, 100-106.	5.5	54
64	Complex role of NK cells in regulation of oncolytic virus–bortezomib therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4927-4932.	7.1	52
65	Molecular and Clinical Advances in Core Binding Factor Primary Acute Myeloid Leukemia: A Paradigm for Translational Research in Malignant Hematology. Cancer Investigation, 2000, 18, 768-780.	1.3	51
66	MicroRNA-29b mediates altered innate immune development in acute leukemia. Journal of Clinical Investigation, 2016, 126, 4404-4416.	8.2	51
67	In Vivo Role of Flt3 Ligand and Dendritic Cells in NK Cell Homeostasis. Journal of Immunology, 2010, 184, 2769-2775.	0.8	50
68	The Natural Product Phyllanthusmin C Enhances IFN-γ Production by Human NK Cells through Upregulation of TLR-Mediated NF-ΪB Signaling. Journal of Immunology, 2014, 193, 2994-3002.	0.8	46
69	Environmental and Genetic Activation of Hypothalamic BDNF Modulates T-cell Immunity to Exert an Anticancer Phenotype. Cancer Immunology Research, 2016, 4, 488-497.	3.4	42
70	Off-the-Shelf Prostate Stem Cell Antigen–Directed Chimeric Antigen Receptor Natural Killer Cell Therapy to Treat Pancreatic Cancer. Gastroenterology, 2022, 162, 1319-1333.	1.3	38
71	PTEN Is a Negative Regulator of NK Cell Cytolytic Function. Journal of Immunology, 2015, 194, 1832-1840.	0.8	37
72	Activated natural killer cells predict poor clinical prognosis in high-risk B- and T-cell acute lymphoblastic leukemia. Blood, 2021, 138, 1465-1480.	1.4	34

#	Article	IF	CITATIONS
73	Ontogeny and Expansion of Human Natural Killer Cells: Clinical Implications. International Reviews of Immunology, 2001, 20, 503-536.	3.3	33
74	Epigenetic and Posttranscriptional Regulation of CD16 Expression during Human NK Cell Development. Journal of Immunology, 2018, 200, 565-572.	0.8	33
75	Promoter-Specific Hypomethylation Is Associated with Overexpression of PLS3, GATA6, and TWIST1 in the Sezary Syndrome. Journal of Investigative Dermatology, 2015, 135, 2084-2092.	0.7	32
76	Immunotherapeutic Approaches for Hematologic Malignancies. Hematology American Society of Hematology Education Program, 2004, 2004, 337-353.	2.5	31
77	Enriched environment regulates thymocyte development and alleviates experimental autoimmune encephalomyelitis in mice. Brain, Behavior, and Immunity, 2019, 75, 137-148.	4.1	31
78	Targeting Fc Receptor-Mediated Effects and the "Don't Eat Me―Signal with an Oncolytic Virus Expressing an Anti-CD47 Antibody to Treat Metastatic Ovarian Cancer. Clinical Cancer Research, 2022, 28, 201-214.	7.0	31
79	A Phase I/II Trial of Cetuximab in Combination with Interleukin-12 Administered to Patients with Unresectable Primary or Recurrent Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2019, 25, 4955-4965.	7.0	30
80	BAI1 Orchestrates Macrophage Inflammatory Response to HSV Infectionâ€"Implications for Oncolytic Viral Therapy. Clinical Cancer Research, 2017, 23, 1809-1819.	7.0	29
81	Combined loss of function of two different loci of miR-15/16 drives the pathogenesis of acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12332-12340.	7.1	28
82	The Fc Domain of Immunoglobulin Is Sufficient to Bridge NK Cells with Virally Infected Cells. Immunity, 2017, 47, 159-170.e10.	14.3	27
83	The Raf Kinase Inhibitor Sorafenib Inhibits JAK–STAT Signal Transduction in Human Immune Cells. Journal of Immunology, 2015, 195, 1995-2005.	0.8	25
84	Adipocytes: A Novel Target for IL-15/IL-15Rî± Cancer Gene Therapy. Molecular Therapy, 2019, 27, 922-932.	8.2	25
85	The Epstein–Barr Virus Lytic Protein BZLF1 as a Candidate Target Antigen for Vaccine Development. Cancer Immunology Research, 2015, 3, 787-794.	3.4	23
86	Oncolytic HSV–Infected Glioma Cells Activate NOTCH in Adjacent Tumor Cells Sensitizing Tumors to Gamma Secretase Inhibition. Clinical Cancer Research, 2020, 26, 2381-2392.	7.0	23
87	CSF1R inhibitor PLX5622 and environmental enrichment additively improve metabolic outcomes in middle-aged female mice. Aging, 2020, 12, 2101-2122.	3.1	22
88	ILC1s control leukemia stem cell fate and limit development of AML. Nature Immunology, 2022, 23, 718-730.	14.5	22
89	Off-the-shelf CAR natural killer cells secreting IL-15 target spike in treating COVID-19. Nature Communications, 2022, 13, 2576.	12.8	21
90	Complete and Durable Responses in Primary Central Nervous System Posttransplant Lymphoproliferative Disorder with Zidovudine, Ganciclovir, Rituximab, and Dexamethasone. Clinical Cancer Research, 2018, 24, 3273-3281.	7.0	20

#	Article	IF	CITATIONS
91	Molecular Basis for the Recognition of Herpes Simplex Virus Type 1 Infection by Human Natural Killer Cells. Frontiers in Immunology, 2018, 9, 183.	4.8	20
92	A novel mouse model for the aggressive variant of NK cell and T cell large granular lymphocyte leukemia. Leukemia Research, 2010, 34, 203-209.	0.8	18
93	Patient Enrichment for Precisionâ€Based Cancer Clinical Trials: Using Prospective Cohort Surveillance as an Approach to Improve Clinical Trials. Clinical Pharmacology and Therapeutics, 2018, 104, 23-26.	4.7	17
94	Notch Regulates Innate Lymphoid Cell Plasticity during Human NK Cell Development. Journal of Immunology, 2020, 205, 2679-2693.	0.8	17
95	A novel regimen for relapsed/refractory adult acute myeloid leukemia using a <i>KMT2A</i> partial tandem duplication targeted therapy: results of phase 1 study NCI 8485. Haematologica, 2018, 103, 982-987.	3.5	16
96	Improving Goal Concordant Care Among 10 Leading Academic U.S. Cancer Hospitals: A Collaboration of the Alliance of Dedicated Cancer Centers. Oncologist, 2021, 26, 533-536.	3.7	16
97	CD84 is a regulator of the immunosuppressive microenvironment in Multiple Myeloma. JCI Insight, 2021, 6, .	5.0	15
98	Hijacking TYRO3 from Tumor Cells via Trogocytosis Enhances NK-cell Effector Functions and Proliferation. Cancer Immunology Research, 2021, 9, 1229-1241.	3.4	14
99	PDGF-Dâ^'PDGFRβ signaling enhances IL-15â€"mediated human natural killer cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
100	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	4.1	13
101	Rapid Column-Free Enrichment of Mononuclear Cells from Solid Tissues. Scientific Reports, 2015, 5, 12490.	3.3	11
102	Enhancing Effects of Environmental Enrichment on the Functions of Natural Killer Cells in Mice. Frontiers in Immunology, 2021, 12, 695859.	4.8	10
103	Cbl-b Is Upregulated and Plays a Negative Role in Activated Human NK Cells. Journal of Immunology, 2021, 206, 677-685.	0.8	10
104	Oncolytic HSV Vectors and Anti-Tumor Immunity. Current Issues in Molecular Biology, 2021, 41, 381-468.	2.4	8
105	ReSETting PP2A Tumor Suppressor Activity Overcomes BCR/ABL Leukemogenic Potential in Blast Crisis CML Blood, 2005, 106, 1992-1992.	1.4	8
106	Identification and Targeting of the Developmental Blockade in Extranodal Natural Killer/T-cell Lymphoma. Blood Cancer Discovery, 2022, 3, 154-169.	5.0	8
107	Increased Levels of Plasma Epstein Barr Virus DNA Identify a Poor-Risk Subset of Patients With Advanced Stage Cutaneous T-Cell Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S181-S190.e4.	0.4	7
108	Editorial: Natural Killer Cells in Tissue Compartments. Frontiers in Immunology, 2020, 11, 258.	4.8	7

#	Article	IF	Citations
109	Enriched environment enhances NK cell maturation through hypothalamic BDNF in male mice. European Journal of Immunology, 2021, 51, 557-566.	2.9	6
110	Unraveling the Role of Innate Lymphoid Cells in Acute Myeloid Leukemia. Cancers, 2021, 13, 320.	3.7	6
111	Acute Myeloid Leukemia Alters Group 1 Innate Lymphoid Cell Differentiation from a Common Precursor. Journal of Immunology, 2021, 207, 1672-1682.	0.8	6
112	Environmental activation of a hypothalamic BDNF-adipocyte IL-15 axis regulates adipose-natural killer cells. Brain, Behavior, and Immunity, 2021, 95, 477-488.	4.1	5
113	A Phase II Study of the TNF-α Inhibitor Etanercept and Thrice Weekly Rituximab in Relapsed CLL/SLL: Clinical Activity in the Absence of Del(17p13) Genomic Abnormalities Blood, 2006, 108, 2841-2841.	1.4	4
114	MLL-PTD Causes Hypomorph Condition of CBF Complex (RUNX1/CBF \hat{l}^2) and Predisposes the Abnormal Hematopoietic Stem and Progenitor Cells (HSPCs) to Clonal Expansion. Blood, 2011, 118, 2801-2801.	1.4	4
115	A four-stage model for murine natural killer cell development in vivo. Journal of Hematology and Oncology, 2022, 15, 31.	17.0	4
116	Targeted Delivery of BZLF1 to DEC205 Drives EBV-Protective Immunity in a Spontaneous Model of EBV-Driven Lymphoproliferative Disease. Vaccines, 2021, 9, 555.	4.4	3
117	Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2 / neu-positive breast cancer cells. , 2001, 31, 3016.		3
118	NK Cells Contribute Significantly to the Innate Immune Effector Role of CD37-Specific SMIP in CLL and NHL Blood, 2006, 108, 135-135.	1.4	3
119	Select High Risk Genetic Features Predict Earlier Progression Following Chemoimmunotherapy with Fludarabine and Rituximab in Chronic Lymphocytic Leukemia (CLL): Preliminary Justification for Risk-Adapted Therapy Blood, 2004, 104, 476-476.	1.4	3
120	Amplification of mixed lineage leukemia gene perturbs hematopoiesis and cooperates with partial tandem duplication to induce acute myeloid leukemia. Haematologica, 2017, 102, e300-e304.	3.5	2
121	Elucidation of the Molecular Mechanisms by Which Inflammatory and Anti-Inflammatory Monokines Regulate Interferon (IFN)- Î ³ Production Blood, 2004, 104, 111-111.	1.4	2
122	Adipocyte CD1d Gene Transfer Induces T Cell Expansion and Adipocyte Inflammation in CD1d Knockout Mice. Journal of Immunology, 2022, 208, 2109-2121.	0.8	2
123	The Clinical Role of Micrornas (miRs) in Cytogenetically Normal (CN) Acute Myeloid Leukemia (AML): miR-155 Upregulation Independently Identifies High-Risk Patients (Pts). Blood, 2012, 120, 1387-1387.	1.4	1
124	A Phase II Study of the TNF-α Inhibitor Etanercept and Thrice Weekly Rituximab: Evidence of Clinical Activity in the Absence of del(17p13.1) Genomic Abnormalities Blood, 2004, 104, 3469-3469.	1.4	1
125	Effective Targeting of Acute Myeloid Leukemia (AML) Harboring the FLT3 ITD Mutation through the Axl/Gas6 Pathway. Blood, 2010, 116, 500-500.	1.4	1
126	Human Natural Killer (NK) Cells: Differential Expression of Phosphatase and Tensin Homologue Deleted On Chromosome Ten (PTEN) During NK Cell Development Regulates Its Cytolytic Activity Against Leukemic Target Cells. Blood, 2012, 120, 254-254.	1.4	1

#	ARTICLE	IF	CITATIONS
127	CSIG-23. NOTCH ACTIVATION INDUCED BY HSV-1 ENCODED miRNA-H16 SENSITIZES oHSV-TREATED TUMORS TO NOTCH INHIBITOR. Neuro-Oncology, 2019, 21, vi49-vi49.	1.2	0
128	Efficient and Reproducible Retroviral Infection of Primary Human Natural Killer Cells Blood, 2004, 104, 1348-1348.	1.4	0
129	Characterization of An NKp46+ NKT Subset Which Is Susceptible to Malignant Transformation in Vivo Blood, 2008, 112, 1546-1546.	1.4	0
130	Activation of a Mir-181-Targeting HOXA-PBX3 Homeobox Gene Signature Is Associated with Adverse Prognosis of Cytogenetically Abnormal Acute Myeloid Leukemia. Blood, 2011, 118, 236-236.	1.4	0
131	The Epstein-Barr Virus Lytic Protein BZLF1 As a Candidate Target Antigen for Vaccine Development. Blood, 2014, 124, 4144-4144.	1.4	0
132	FLT3-ITD Activates Cytoplasmic Drosha-Dependent Non-Canonical Mechanisms of Mir-155 Biogenesis in Acute Myeloid Leukemia. Blood, 2019, 134, 2722-2722.	1.4	0
133	Role of Mir-29b in T-Cell Development and in Cutaneous T-Cell Lymphoma Pathogenesis. Blood, 2020, 136, 37-37.	1.4	0
134	Activated Natural Killer Cells Are Associated with Poor Clinical Prognosis in High-Risk B- and T- Cell Acute Lymphoblastic Leukemia. Blood, 2020, 136, 39-39.	1.4	0