
Monika Gladka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4356210/publications.pdf Version: 2024-02-01

MONIKA CLADKA

#	Article	IF	CITATIONS
1	MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nature Cell Biology, 2010, 12, 1220-1227.	10.3	289
2	Conditional <i>Dicer</i> Gene Deletion in the Postnatal Myocardium Provokes Spontaneous Cardiac Remodeling. Circulation, 2008, 118, 1567-1576.	1.6	282
3	Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Cytoskeleton-Associated Protein 4 as a New Modulator of Fibroblasts Activation. Circulation, 2018, 138, 166-180.	1.6	231
4	Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nature Cell Biology, 2013, 15, 1282-1293.	10.3	126
5	Tomo-Seq Identifies SOX9 as a Key Regulator of Cardiac Fibrosis During Ischemic Injury. Circulation, 2017, 136, 1396-1409.	1.6	81
6	Small changes can make a big difference — MicroRNA regulation of cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2012, 52, 74-82.	1.9	55
7	Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nature Communications, 2021, 12, 84.	12.8	48
8	Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair. Communications Biology, 2021, 4, 146.	4.4	41
9	Gene expression profiling of hypertrophic cardiomyocytes identifies new players in pathological remodelling. Cardiovascular Research, 2021, 117, 1532-1545.	3.8	37
10	Aquaporin 7: the glycerol aquaeductus in the heart. Cardiovascular Research, 2009, 83, 3-4.	3.8	18
11	The endothelium as Achilles' heel in COVID-19 patients. Cardiovascular Research, 2020, 116, e195-e197.	3.8	14
12	Single-Cell RNA Sequencing of the Adult Mammalian Heart—State-of-the-Art and Future Perspectives. Current Heart Failure Reports, 2021, 18, 64-70.	3.3	10
13	Cellular communication in a â€~virtual lab': going beyond the classical ligand-receptor interaction. Cardiovascular Research, 2020, 116, e67-e69.	3.8	8
14	AntimiR-34a to Enhance Cardiac Repair After Ischemic Injury. Circulation Research, 2015, 117, 395-397.	4.5	7
15	Young@Heart: empowering the next generation of cardiovascular researchers. Netherlands Heart Journal, 2020, 28, 25-30.	0.8	1
16	Cutting a path to effective delivery of genome engineering machinery. Cardiovascular Research, 2022, ,	3.8	1
17	Jumping on base editing to repair the diseased cardiovascular system <i>in vivo</i> . Cardiovascular Research, 2021, 117, e46-e48.	3.8	0
18	Scientists on the Spot: Re-awakening the heart's regenerative capacity. Cardiovascular Research, 2021, 117, e79-e81.	3.8	0

#	Article	IF	CITATIONS
19	Scientists on the Spot: Re-defining atherosclerosis through biobanks. Cardiovascular Research, 2021, 117, e99-e100.	3.8	0
20	Studying the role of chromatin organization in cardiovascular diseases: future perspectives. Cardiovascular Research, 2021, 117, e156-e158.	3.8	0
21	Scientists on the Spot: RNA modifications in atherosclerosis. Cardiovascular Research, 2021, 117, e9-e9.	3.8	0