Simon C Lovell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4355459/publications.pdf

Version: 2024-02-01

69 papers 13,170 citations

172457 29 h-index 98798 67 g-index

74 all docs

74 docs citations

74 times ranked 21219 citing authors

#	Article	IF	Citations
1	Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins: Structure, Function and Bioinformatics, 2003, 50, 437-450.	2.6	4,134
2	MolProbity: More and better reference data for improved allâ€atom structure validation. Protein Science, 2018, 27, 293-315.	7.6	2,776
3	Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation 1 1Edited by J. Thornton. Journal of Molecular Biology, 1999, 285, 1735-1747.	4.2	1,264
4	The penultimate rotamer library. Proteins: Structure, Function and Bioinformatics, 2000, 40, 389-408.	2.6	977
5	Mutations in ADAR1 cause Aicardi-Goutià res syndrome associated with a type I interferon signature. Nature Genetics, 2012, 44, 1243-1248.	21.4	712
6	Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms 1 1Edited by J. Thornton. Journal of Molecular Biology, 1999, 285, 1711-1733.	4.2	511
7	Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nature Genetics, 2012, 44, 338-342.	21.4	234
8	Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nature Genetics, 2011, 43, 127-131.	21.4	214
9	The interface of protein structure, protein biophysics, and molecular evolution. Protein Science, 2012, 21, 769-785.	7.6	188
10	ERp57 is essential for efficient folding of glycoproteins sharing common structural domains. EMBO Journal, 2007, 26, 28-40.	7.8	177
11	Protein-protein interaction networks and biologyâ€"what's the connection?. Nature Biotechnology, 2008, 26, 69-72.	17.5	175
12	All duplicates are not equal: the difference between small-scale and genome duplication. Genome Biology, 2007, 8, R209.	9.6	163
13	Ab initio construction of polypeptide fragments: Efficient generation of accurate, representative ensembles. Proteins: Structure, Function and Bioinformatics, 2003, 51, 41-55.	2.6	134
14	An Integrated View of Molecular Coevolution in Protein-Protein Interactions. Molecular Biology and Evolution, 2010, 27, 2567-2575.	8.9	119
15	Specificity in protein interactions and its relationship with sequence diversity and coevolution. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7999-8004.	7.1	114
16	Distinguishing Structural and Functional Restraints in Evolution in Order to Identify Interaction Sites. Journal of Molecular Biology, 2004, 342, 1487-1504.	4.2	89
17	Mutations in PCYT2 disrupt etherlipid biosynthesis and cause a complex hereditary spastic paraplegia. Brain, 2019, 142, 3382-3397.	7.6	76
18	Sequencing and Characterisation of Rearrangements in Three S. pastorianus Strains Reveals the Presence of Chimeric Genes and Gives Evidence of Breakpoint Reuse. PLoS ONE, 2014, 9, e92203.	2.5	71

#	Article	IF	CITATIONS
19	Exploring steric constraints on protein mutations using MAGE/PROBE. Protein Science, 2000, 9, 2251-2259.	7.6	68
20	An algorithm for predicting protein-protein interaction sites: Abnormally exposed amino acid residues and secondary structure elements. Protein Science, 2006, 15, 1017-1029.	7.6	61
21	Secondary structure assignment that accurately reflects physical and evolutionary characteristics. BMC Bioinformatics, 2005, 6, S8.	2.6	53
22	Covariation Is a Poor Measure of Molecular Coevolution. Molecular Biology and Evolution, 2015, 32, 2456-2468.	8.9	49
23	Determining the evolutionary history of gene families. Bioinformatics, 2012, 28, 48-55.	4.1	48
24	Gene Duplication and Environmental Adaptation within Yeast Populations. Genome Biology and Evolution, 2010, 2, 591-601.	2.5	44
25	Characterization of Protein-Protein Interaction Interfaces from a Single Species. PLoS ONE, 2011, 6, e21053.	2.5	43
26	The dual role of fragments in fragmentâ€essembly methods for de novo protein structure prediction. Proteins: Structure, Function and Bioinformatics, 2012, 80, 490-504.	2.6	42
27	Rapid functional and evolutionary changes follow gene duplication in yeast. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171393.	2.6	41
28	Crystal Structures of Engrailed Homeodomain Mutants. Journal of Biological Chemistry, 2003, 278, 43699-43708.	3.4	39
29	Generating, Maintaining, and Exploiting Diversity in a Memetic Algorithm for Protein Structure Prediction. Evolutionary Computation, 2016, 24, 577-607.	3.0	38
30	Ebolavirus is evolving but not changing: No evidence for functional change in EBOV from 1976 to the 2014 outbreak. Virology, 2015, 482, 202-207.	2.4	31
31	The Effect of Sequence Evolution on Protein Structural Divergence. Molecular Biology and Evolution, 2009, 26, 1055-1065.	8.9	30
32	Interactions between Kar2p and Its Nucleotide Exchange Factors Sil1p and Lhs1p Are Mechanistically Distinct. Journal of Biological Chemistry, 2010, 285, 21600-21606.	3.4	27
33	Human glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site. BMC Biology, 2004, 2, 2.	3.8	26
34	Constraints on HIV-1 Diversity from Protein Structure. Journal of Virology, 2010, 84, 12995-13003.	3.4	25
35	Agnathia-otocephaly complex and asymmetric velopharyngeal insufficiency due to an in-frame duplication in OTX2. Journal of Human Genetics, 2015, 60, 199-202.	2.3	25
36	Are nonâ€functional, unfolded proteins (â€̃junk proteins') common in the genome?. FEBS Letters, 2003, 554, 237-239.	2.8	22

#	Article	IF	Citations
37	Abrogation of HMX1 Function Causes Rare Oculoauricular Syndrome Associated With Congenital Cataract, Anterior Segment Dysgenesis, and Retinal Dystrophy. Investigative Ophthalmology and Visual Science, 2015, 56, 883-891.	3.3	22
38	Non-muscle myosin IIB (Myh10) is required for epicardial function and coronary vessel formation during mammalian development. PLoS Genetics, 2017, 13, e1007068.	3.5	22
39	Toward a detailed understanding of search trajectories in fragment assembly approaches to protein structure prediction. Proteins: Structure, Function and Bioinformatics, 2016, 84, 411-426.	2.6	18
40	Cooperativity in Bacillus stearothermophilus pyruvate kinase. Journal of Molecular Biology, 1998, 276, 839-851.	4.2	16
41	Quantitative analysis and prediction of curvature in leucineâ€rich repeat proteins. Proteins: Structure, Function and Bioinformatics, 2009, 77, 342-358.	2.6	16
42	Modular Biological Function Is Most Effectively Captured by Combining Molecular Interaction Data Types. PLoS ONE, 2013, 8, e62670.	2.5	16
43	Variability in Gene Expression is Associated with Incomplete Penetrance in Inherited Eye Disorders. Genes, 2020, 11, 179.	2.4	14
44	Phosphorylation of the Leukemic Oncoprotein EVI1 on Serine 196 Modulates DNA Binding, Transcriptional Repression and Transforming Ability. PLoS ONE, 2013, 8, e66510.	2.5	14
45	Analysis of Synthetic Lethality Reveals Genetic Interactions Between the GTPase Snu114p and snRNAs in the Catalytic Core of the <i>Saccharomyces cerevisiae</i> Spliceosome. Genetics, 2009, 183, 497-515.	2.9	12
46	Constraints from protein structure and intra-molecular coevolution influence the fitness of HIV-1 recombinants. Virology, 2014, 454-455, 34-39.	2.4	12
47	Improved fragment-based protein structure prediction by redesign of search heuristics. Scientific Reports, 2018, 8, 13694.	3.3	12
48	EVI1 carboxy-terminal phosphorylation is ATM-mediated and sustains transcriptional modulation and self-renewal via enhanced CtBP1 association. Nucleic Acids Research, 2018, 46, 7662-7674.	14.5	11
49	Using an integrative machine learning approach utilising homology modelling to clinically interpret genetic variants: CACNA1F as an exemplar. European Journal of Human Genetics, 2020, 28, 1274-1282.	2.8	11
50	Alternative splicing and protein interaction data sets. Nature Biotechnology, 2013, 31, 292-293.	17.5	10
51	Adaptive HIV-1 evolutionary trajectories are constrained by protein stability. Virus Evolution, 2017, 3, vex019.	4.9	10
52	Evolution in protein interaction networks: co-evolution, rewiring and the role of duplication. Biochemical Society Transactions, 2009, 37, 768-771.	3.4	9
53	The Role of Protein Interactions in Mediating Essentiality and Synthetic Lethality. PLoS ONE, 2013, 8, e62866.	2.5	9
54	The origins of the evolutionary signal used to predict protein-protein interactions. BMC Evolutionary Biology, 2012, 12, 238.	3.2	8

#	Article	IF	CITATIONS
55	Erbb2 Is Required for Cardiac Atrial Electrical Activity during Development. PLoS ONE, 2014, 9, e107041.	2.5	7
56	Binding interface change and cryptic variation in the evolution of protein-protein interactions. BMC Evolutionary Biology, 2016, 16, 40.	3.2	7
57	Mutations in Non-Acid Patch Residues Disrupt H2A.Z's Association with Chromatin through Multiple Mechanisms. PLoS ONE, 2013, 8, e76394.	2.5	6
58	Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions. PLoS ONE, 2014, 9, e99480.	2.5	6
59	Correlation of microsynteny conservation and disease gene distribution in mammalian genomes. BMC Genomics, 2009, 10, 521.	2.8	5
60	Diversification at Transcription Factor Binding Sites within a Species and the Implications for Environmental Adaptation. Molecular Biology and Evolution, 2011, 28, 3331-3344.	8.9	5
61	Biochemical and structural analyses suggest that plasminogen activators coevolved with their cognate protein substrates and inhibitors. Journal of Biological Chemistry, 2019, 294, 3794-3805.	3.4	5
62	Using Knowledge of Protein Structural Constraints to Predict the Evolution of HIV-1. Journal of Molecular Biology, 2011, 410, 1023-1034.	4.2	4
63	Evolvability of Yeast Protein–Protein Interaction Interfaces. Journal of Molecular Biology, 2012, 419, 387-396.	4.2	4
64	DupliPHY-Web: a web server for DupliPHY and DupliPHY-ML. Bioinformatics, 2015, 31, 416-417.	4.1	4
65	EVI1 phosphorylation at S436 regulates interactions with CtBP1 and DNMT3A and promotes self-renewal. Cell Death and Disease, 2020, 11, 878.	6.3	4
66	Using Machine Learning to Explore the Relevance of Local and Global Features During Conformational Search in Rosetta. , 2015, , .		1
67	Analysis of Genetic Interaction Networks Shows That Alternatively Spliced Genes Are Highly Versatile. PLoS ONE, 2013, 8, e55671.	2.5	1
68	On heuristic bias in fragment-assembly methods for protein structure prediction. , 2017, , .		0
69	Reliable Generation of Native-Like Decoys Limits Predictive Ability in Fragment-Based Protein Structure Prediction. Biomolecules, 2019, 9, 612.	4.0	O