Christopher Dockendorff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4355324/publications.pdf

Version: 2024-02-01

50 papers 1,558 citations

471061 17 h-index 315357 38 g-index

79 all docs

79 docs citations

times ranked

79

1750 citing authors

#	Article	IF	CITATIONS
1	A thrombin-PAR1/2 feedback loop amplifies thromboinflammatory endothelial responses to the viral RNA analogue poly(I:C). Blood Advances, 2021, 5, 2760-2774.	2.5	15
2	The Evolving Concept of Neuro-Thromboinflammation for Neurodegenerative Disorders and Neurotrauma: A Rationale for PAR1-Targeting Therapies. Biomolecules, 2021, 11, 1558.	1.8	1
3	Computationallyâ€Guided Investigation of Dual Amine/pi Lewis Acid Catalysts for Direct Additions of Aldehydes and Ketones to Unactivated Alkenes and Alkynes. ChemistrySelect, 2020, 5, 8405-8414.	0.7	1
4	Route exploration and synthesis of the reported pyridone-based PDI inhibitor STK076545. Organic and Biomolecular Chemistry, 2020, 18, 6665-6681.	1.5	7
5	Synthesis and initial pharmacology of dual-targeting ligands for putative complexes of integrin $\hat{l}\pm V\hat{l}^2$ 3 and PAR2. RSC Medicinal Chemistry, 2020, 11, 940-949.	1.7	2
6	Modified synthesis of the peptidomimetic natriuretic peptide receptor-C antagonist M372049. Tetrahedron Letters, 2020, 61, 151654.	0.7	1
7	Î ² -Fluorofentanyls Are pH-Sensitive Mu Opioid Receptor Agonists. ACS Medicinal Chemistry Letters, 2019, 10, 1353-1356.	1.3	18
8	Evaluation of \hat{l}_{\pm} -hydroxycinnamic acids as pyruvate carboxylase inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 4041-4047.	1.4	5
9	NMR Structural Analysis of Isolated Shaker Voltage-Sensing Domain in LPPG Micelles. Biophysical Journal, 2019, 117, 388-398.	0.2	3
10	The parmodulin NRD-21 is an allosteric inhibitor of PAR1 Gq signaling with improved anti-inflammatory activity and stability. Bioorganic and Medicinal Chemistry, 2019, 27, 3788-3796.	1.4	9
11	An anthrone-based Kv7.2/7.3 channel blocker with improved properties for the investigation of psychiatric and neurodegenerative disorders. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126681.	1.0	5
12	Synthesis of Simplified Azasordarin Analogs as Potential Antifungal Agents. Journal of Organic Chemistry, 2019, 84, 5292-5304.	1.7	5
13	Design and Evaluation of Heterobivalent PAR1–PAR2 Ligands as Antagonists of Calcium Mobilization. ACS Medicinal Chemistry Letters, 2019, 10, 121-126.	1.3	10
14	DFT-Assisted Design and Evaluation of Bifunctional Amine/Pyridine-Oxazoline Metal Catalysts for Additions of Ketones to Unactivated Alkenes and Alkynes. Synthesis, 2019, 51, 450-462.	1.2	4
15	Synthetic Analogues of the Snail Toxin 6-Bromo-2-mercaptotryptamine Dimer (BrMT) Reveal That Lipid Bilayer Perturbation Does Not Underlie Its Modulation of Voltage-Gated Potassium Channels. Biochemistry, 2018, 57, 2733-2743.	1.2	18
16	Characterization of Protease-Activated Receptor (PAR) ligands: Parmodulins are reversible allosteric inhibitors of PAR1-driven calcium mobilization in endothelial cells. Bioorganic and Medicinal Chemistry, 2018, 26, 2514-2529.	1.4	13
17	PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E982-E991.	3.3	55
18	Synthesis of a novel bicyclic scaffold inspired by the antifungal natural product sordarin. Tetrahedron Letters, 2018, 59, 3373-3376.	0.7	9

#	Article	IF	Citations
19	DFT-assisted design and evaluation of bifunctional copper(I) catalysts for the direct intermolecular addition of aldehydes and ketones to alkynes. Tetrahedron, 2018, 74, 4823-4836.	1.0	6
20	Discovery of Novel Small Molecule Inhibitors of Bacterial Pyruvate Carboxylase. FASEB Journal, 2018, 32, 810.15.	0.2	0
21	Cytoprotective activated protein C averts Nlrp3 inflammasome–induced ischemia-reperfusion injury via mTORC1 inhibition. Blood, 2017, 130, 2664-2677.	0.6	125
22	Monitoring Replication Protein A (RPA) dynamics in homologous recombination through site-specific incorporation of non-canonical amino acids. Nucleic Acids Research, 2017, 45, 9413-9426.	6.5	43
23	Design and Synthesis of Oxazoline-Based Scaffolds for Hybrid Lewis Acid/Lewis Base Catalysis of Carbon–Carbon Bond Formation. Synthesis, 2016, 48, 2413-2422.	1.2	5
24	Multifunctional heterocyclic scaffolds for hybrid Lewis acid/Lewis base catalysis of carbon–carbon bond formation. Tetrahedron, 2016, 72, 3905-3916.	1.0	13
25	A Chemical APC Mimetic Protects Endothelium from Thromboinflammatory Injury. Blood, 2016, 128, 3835-3835.	0.6	3
26	Parmodulins inhibit thrombus formation without inducing endothelial injury caused by vorapaxar. Blood, 2015, 125, 1976-1985.	0.6	71
27	Discovery of bisamide-heterocycles as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2594-2598.	1.0	9
28	Indolinyl-Thiazole Based Inhibitors of Scavenger Receptor-BI (SR-BI)-Mediated Lipid Transport. ACS Medicinal Chemistry Letters, 2015, 6, 375-380.	1.3	11
29	Benzo-fused lactams from a diversity-oriented synthesis (DOS) library as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2100-2105.	1.0	16
30	Effects Of Biased PAR1 Ligands On Platelets and Endothelial Cells. Blood, 2013, 122, 23-23.	0.6	46
31	Macrocyclic Hedgehog Pathway Inhibitors: Optimization of Cellular Activity and Mode of Action Studies. ACS Medicinal Chemistry Letters, 2012, 3, 808-813.	1.3	39
32	Discovery of 1,3-Diaminobenzenes as Selective Inhibitors of Platelet Activation at the PAR1 Receptor. ACS Medicinal Chemistry Letters, 2012, 3, 232-237.	1.3	39
33	Overcoming fluconazole resistance in Candida albicans clinical isolates with tetracyclic indoles. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3362-3365.	1.0	21
34	Identification of small-molecule inhibitors of Trypansoma cruzi replication. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7197-7200.	1.0	12
35	An Allosteric Modulator of PAR1 Demonstrates Selective Inhibition of G Protein Coupling and Impairs Thrombus Formation In Vivo. Blood, 2011, 118, 1138-1138.	0.6	0
36	Identification of a Novel Par1 inhibitor Using a Chemical Genetic Screen. Blood, 2010, 116, 2018-2018.	0.6	1

#	Article	IF	CITATIONS
37	Synthesis of diverse heterocyclic scaffolds via tandem additions to imine derivatives and ring-forming reactions. Tetrahedron, 2009, 65, 6454-6469.	1.0	79
38	Discovery of $\hat{l}\frac{1}{4}$ -opioid selective ligands derived from 1-aminotetralin scaffolds made via metal-catalyzed ring-opening reactions. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1228-1232.	1.0	28
39	A Chemical Genetic Analysis of Platelet Activation Blood, 2009, 114, 4009-4009.	0.6	4
40	Concise Enantioselective Total Syntheses of (+)â€Homochelidonine, (+)â€Chelamidine, (+)â€Chelidonine, (+)â€Chelamine and (+)â€Norchelidonine by a Pd ^{ll} â€Catalyzed Ringâ€Opening Strategy. Chemistry European Journal, 2008, 14, 2112-2124.	A .7	65
41	Applications of Multicomponent Reactions for the Synthesis of Diverse Heterocyclic Scaffolds. Organic Letters, 2007, 9, 4223-4226.	2.4	171
42	Rhodium-Catalyzed Asymmetric Allylic Substitution with Boronic Acid Nucleophiles. Organic Letters, 2006, 8, 4569-4572.	2.4	91
43	tert-Butyl (2-phenyl-1,2-dihydro-1-naphthyl)carbamate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o107-o108.	0.2	0
44	2-Methoxy-N-[2-(3-thienyl)-1,2,3,4-tetrahydro-1-naphthyl]acetamide. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o639-o641.	0.2	1
45	2-(1-Phenylsulfonyl-1H-indol-3-yl)-1,2-dihydronaphthalen-1-ol. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o1030-o1032.	0.2	0
46	2,4-Dimethyl-6-phenyl-8-oxabicyclo[3.2.1]octan-3-one. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o1601-o1603.	0.2	0
47	Synthesis of Dihydronaphthalenes via Aryne Dielsâ ⁻ 'Alder Reactions:Â Scope and Diastereoselectivity. Journal of the American Chemical Society, 2005, 127, 15028-15029.	6.6	116
48	Palladium(II) Catalyst Systems for the Addition of Boronic Acids to Bicyclic Alkenes:  New Scope and Reactivity. Organic Letters, 2003, 5, 3695-3698.	2.4	111
49	Rhodium-Catalyzed Asymmetric Ring Opening of Oxabicyclic Alkenes with Organoboronic Acids. Organic Letters, 2002, 4, 1311-1314.	2.4	218
50	Synthesis of Protectedl-4-[Sulfono(difluoromethyl)]phenylalanine and Its Incorporation into a Peptide. Organic Letters, 2001, 3, 1571-1574.	2.4	28