Taimur Ahmed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4355215/publications.pdf

Version: 2024-02-01

257450 197818 2,453 56 24 49 h-index citations g-index papers 57 57 57 3323 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optically Stimulated Artificial Synapse Based on Layered Black Phosphorus. Small, 2019, 15, e1900966.	10.0	201
2	Metal‣oaded Dielectric Resonator Metasurfaces for Radiative Cooling. Advanced Optical Materials, 2017, 5, 1700460.	7.3	177
3	Fully Lightâ€Controlled Memory and Neuromorphic Computation in Layered Black Phosphorus. Advanced Materials, 2021, 33, e2004207.	21.0	147
4	Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods. ACS Applied Nano Materials, 2018, 1, 1694-1704.	5.0	144
5	Ambient Protection of Fewâ€Layer Black Phosphorus via Sequestration of Reactive Oxygen Species. Advanced Materials, 2017, 29, 1700152.	21.0	141
6	Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin. ACS Nano, 2017, 11, 10974-10983.	14.6	122
7	Black phosphorus: ambient degradation and strategies for protection. 2D Materials, 2018, 5, 032001.	4.4	119
8	Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Materials, 2017, 4, 015025.	4.4	110
9	Multifunctional Optoelectronics via Harnessing Defects in Layered Black Phosphorus. Advanced Functional Materials, 2019, 29, 1901991.	14.9	97
10	Degradation of black phosphorus is contingent on UVâ \in "blue light exposure. Npj 2D Materials and Applications, 2017, 1, .	7.9	95
11	Metal–Air Transistors: Semiconductor-Free Field-Emission Air-Channel Nanoelectronics. Nano Letters, 2018, 18, 7478-7484.	9.1	76
12	Donorâ€Induced Performance Tuning of Amorphous SrTiO ₃ Memristive Nanodevices: Multistate Resistive Switching and Mechanical Tunability. Advanced Functional Materials, 2015, 25, 3172-3182.	14.9	68
13	Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors. Advanced Materials, 2020, 32, e2004247.	21.0	66
14	Insulator–metal transition in substrate-independent VO2 thin film for phase-change devices. Scientific Reports, 2017, 7, 17899.	3.3	63
15	Soft exfoliation of 2D SnO with size-dependent optical properties. 2D Materials, 2017, 4, 025110.	4.4	59
16	Bi ₂ O ₃ monolayers from elemental liquid bismuth. Nanoscale, 2018, 10, 15615-15623.	5.6	52
17	Large-area synthesis of 2D MoO _{3â^' <i>x</i>} for enhanced optoelectronic applications. 2D Materials, 2019, 6, 035031.	4.4	48
18	Reversible resistive switching behaviour in CVD grown, large area MoO _x . Nanoscale, 2018, 10, 19711-19719.	5.6	46

#	Article	IF	CITATIONS
19	A Visibleâ€Blind Photodetector and Artificial Optoelectronic Synapse Using Liquidâ€Metal Exfoliated ZnO Nanosheets. Advanced Optical Materials, 2021, 9, 2100449.	7.3	41
20	Microstructure and dynamics of vacancy-induced nanofilamentary switching network in donor doped SrTiO _{3â^'<i>x</i>} memristors. Nanotechnology, 2016, 27, 505210.	2.6	39
21	Effects of plasma-treatment on the electrical and optoelectronic properties of layered black phosphorus. Applied Materials Today, 2018, 12, 244-249.	4.3	38
22	Exfoliation of Quasi-Stratified Bi ₂ S ₃ Crystals into Micron-Scale Ultrathin Corrugated Nanosheets. Chemistry of Materials, 2016, 28, 8942-8950.	6.7	31
23	Ordered-vacancy-enabled indium sulphide printed in wafer-scale with enhanced electron mobility. Materials Horizons, 2020, 7, 827-834.	12.2	27
24	Twoâ€Step Synthesis of Largeâ€Area 2D Bi ₂ S ₃ Nanosheets Featuring High Inâ€Plane Anisotropy. Advanced Materials Interfaces, 2020, 7, 2001131.	3.7	27
25	A Physical Unclonable Function With Redox-Based Nanoionic Resistive Memory. IEEE Transactions on Information Forensics and Security, 2018, 13, 437-448.	6.9	24
26	Broad-Spectrum Solvent-free Layered Black Phosphorus as a Rapid Action Antimicrobial. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17340-17352.	8.0	24
27	Growth temperature dependent dielectric properties of BiFeO3 thin films deposited on silica glass substrates. Thin Solid Films, 2012, 520, 4470-4474.	1.8	23
28	Inducing tunable switching behavior in a single memristor. Applied Materials Today, 2018, 11, 280-290.	4.3	21
29	Rapid and Selective Biomarker Detection with Conductometric Sensors. Small, 2021, 17, e2005582.	10.0	20
30	Nano-Intrinsic True Random Number Generation: A Device to Data Study. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 2615-2626.	5.4	19
31	Transparent amorphous strontium titanate resistive memories with transient photo-response. Nanoscale, 2017, 9, 14690-14702.	5.6	18
32	Oxygen-deficient strontium titanate based stretchable resistive memories. Applied Materials Today, 2018, 13, 126-134.	4.3	17
33	In Situ Nanostructural Analysis of Volatile Threshold Switching and Nonâ€Volatile Bipolar Resistive Switching in Mixedâ€Phased <i>a</i> â€VO <i>_x</i> Asymmetric Crossbars. Advanced Electronic Materials, 2019, 5, 1900605.	5.1	17
34	Broadband light active MTCNQ-based metal–organic semiconducting hybrids for enhanced redox catalysis. Applied Materials Today, 2018, 13, 107-115.	4.3	16
35	Encapsulation-Free Stabilization of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation-Free Stabilization of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus. ACS Applied Materials & Encapsulation of Few-Layer Black Phosphorus of P	8.0	16
36	Electron Emission Devices for Energyâ€Efficient Systems. Advanced Intelligent Systems, 2019, 1, 1900039.	6.1	16

3

#	Article	IF	Citations
37	Mixed Ionicâ€Electronic Charge Transport in Layered Blackâ€Phosphorus for Lowâ€Power Memory. Advanced Functional Materials, 2022, 32, 2107068.	14.9	16
38	Augmented band gap tunability in indium-doped zinc sulfide nanocrystals. Nanoscale, 2019, 11, 3154-3163.	5.6	15
39	Generating strong room-temperature photoluminescence in black phosphorus using organic molecules. 2D Materials, 2019, 6, 015009.	4.4	15
40	Large magnetotransport properties in mixed-dimensional van der Waals heterostructures of graphene foam. Carbon, 2020, 159, 648-655.	10.3	15
41	Two-dimensional MoO ₃ via a top-down chemical thinning route. 2D Materials, 2017, 4, 035008.	4.4	14
42	Monocrystalline Antimonene Nanosheets via Physical Vapor Deposition. Advanced Materials Interfaces, 2020, 7, 2001678.	3.7	14
43	Sulfurization Engineering of Oneâ€Step Lowâ€Temperature MoS ₂ and WS ₂ Thin Films for Memristor Device Applications. Advanced Electronic Materials, 2022, 8, 2100515.	5.1	14
44	Time and rate dependent synaptic learning in neuro-mimicking resistive memories. Scientific Reports, 2019, 9, 15404.	3.3	13
45	Role of Water in the Dynamic Crystallization of CuTCNQ for Enhanced Redox Catalysis (TCNQ =) Tj ETQq $1\ 1\ 0.78$	34314 rgB ⁻	T /Qverlock
46	Influence of Temperature on Photodetection Properties of Honeycombâ€ike GaN Nanostructures. Advanced Materials Interfaces, 2021, 8, 2100593.	3.7	12
47	Galvanic Replacement of Semiconducting CuTCNQF ₄ with Ag ⁺ lons to Enhance Electron Transfer Reaction. ChemistrySelect, 2017, 2, 9962-9969.	1.5	9
48	Differential Work-Function Enabled Bifunctional Switching in Strontium Titanate Flexible Resistive Memories. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7326-7333.	8.0	9
49	Illuminating the biochemical interaction of antimicrobial few-layer black phosphorus with microbial cells using synchrotron macro-ATR-FTIR. Journal of Materials Chemistry B, 2022, 10, 7527-7539.	5.8	8
50	Nonvolatile Resistive Switching in Layered InSe via Electrochemical Cation Diffusion. Advanced Electronic Materials, 2022, 8, .	5.1	8
51	Data related to the nanoscale structural and compositional evolution in resistance change memories. Data in Brief, 2018, 21, 18-24.	1.0	4
52	Black Phosphorusâ€"Diketopyrrolopyrrole Polymer Semiconductor Hybrid for Enhanced Charge Transfer and Photodetection. Advanced Photonics Research, 2021, 2, 2100150.	3.6	3
53	Microwave Response of BiFeO ₃ Films in Parallel-Plate Capacitors. Integrated Ferroelectrics, 2012, 134, 111-117.	0.7	2
54	Broadband Photodetectors: Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors (Adv. Mater. 45/2020). Advanced Materials, 2020, 32, 2070338.	21.0	2

#	Article	IF	CITATIONS
55	Semiconductor-Free Field-Emission Nanoelectronics: Application in Air-Channel Transistors. , 2019, , .		1
56	Charge injection in vertically stacked multi-layer black phosphorus. Applied Materials Today, 2020, 18, 100481.	4.3	1