

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4353457/publications.pdf Version: 2024-02-01

OINCLU

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Focal adhesion kinase and endothelial cell apoptosis. Microvascular Research, 2012, 83, 56-63.	2.5	81
3	Cigarette Smoke Disrupted Lung Endothelial Barrier Integrity and Increased Susceptibility to Acute Lung Injury via Histone Deacetylase 6. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 683-696.	2.9	63
4	Effects of cigarette smoke on pulmonary endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L743-L756.	2.9	63
5	Isoprenylcysteine Carboxyl Methyltransferase Activity Modulates Endothelial Cell Apoptosis. Molecular Biology of the Cell, 2003, 14, 848-857.	2.1	57
6	Transforming growth factor-β1-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation. Journal of Applied Physiology, 2006, 101, 375-384.	2.5	57
7	Cigarette smoke causes lung vascular barrier dysfunction via oxidative stress-mediated inhibition of RhoA and focal adhesion kinase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L847-L857.	2.9	57
8	Pulmonary Endothelial Cell Apoptosis in Emphysema and Acute Lung Injury. Advances in Anatomy, Embryology and Cell Biology, 2018, 228, 63-86.	1.6	57
9	Adenosine protected against pulmonary edema through transporter- and receptor A ₂ -mediated endothelial barrier enhancement. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L755-L767.	2.9	43
10	Isoprenylcysteine Carboxyl Methyltransferase Modulates Endothelial Monolayer Permeability. Circulation Research, 2004, 94, 306-315.	4.5	37
11	Effect of α7 nicotinic acetylcholine receptor activation on cardiac fibroblasts: a mechanism underlying RV fibrosis associated with cigarette smoke exposure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L748-L759.	2.9	36
12	PKCδ regulates endothelial basal barrier function through modulation of RhoA GTPase activity. Experimental Cell Research, 2005, 308, 407-421.	2.6	35
13	Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 662-673.	2.9	35
14	Self-assembled Micelle Interfering RNA for Effective and Safe Targeting of Dysregulated Genes in Pulmonary Fibrosis. Journal of Biological Chemistry, 2016, 291, 6433-6446.	3.4	34
15	Transforming growth factor-β1 causes pulmonary microvascular endothelial cell apoptosis via ALK5. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L825-L838.	2.9	33
16	Cigarette smoke-induced lung endothelial apoptosis and emphysema are associated with impairment of FAK and eIF2α. Microvascular Research, 2014, 94, 80-89.	2.5	33
17	Macrophage IL-1β promotes arteriogenesis by autocrine STAT3- and NF-κB-mediated transcription of pro-angiogenic VEGF-A. Cell Reports, 2022, 38, 110309.	6.4	33
18	Mitochondrial Fission Mediated Cigarette Smoke–induced Pulmonary Endothelial Injury. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 637-651.	2.9	30

Qing Lu

#	Article	IF	CITATIONS
19	Transforming growth factor-β1 protects against pulmonary artery endothelial cell apoptosis via ALK5. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L123-L133.	2.9	29
20	Sustained adenosine exposure causes lung endothelial apoptosis: a possible contributor to cigarette smoke-induced endothelial apoptosis and lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L361-L370.	2.9	29
21	Double-hit mouse model of cigarette smoke priming for acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L56-L67.	2.9	28
22	Essential oil from Fructus Alpinia zerumbet (fruit of Alpinia zerumbet (Pers.) Burtt.et Smith) protected against aortic endothelial cell injury and inflammation in vitro and in vivo. Journal of Ethnopharmacology, 2019, 237, 149-158.	4.1	23
23	Blockade of equilibrative nucleoside transporter 1/2 protects against <i>Pseudomonas aeruginosa–</i> induced acute lung injury and NLRP3 inflammasome activation. FASEB Journal, 2020, 34, 1516-1531.	0.5	19
24	Inhibition of ICMT Induces Endothelial Cell Apoptosis through GRP94. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 20-30.	2.9	16
25	Sustained Adenosine Exposure Causes Lung Endothelial Barrier Dysfunction via Nucleoside Transporter–Mediated Signaling. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 604-613.	2.9	16

Cigarette smoke alters lung vascular permeability and endothelial barrier function (2017 Grover) Tj ETQq0 0 0 rgBT/Overlock $_{1.7}^{10}$ Voerlock $_{1.7}^{10}$

27	Endothelial Cell Apoptosis. , 0, , 1081-1097.		7
28	Sustained adenosine exposure causes endothelial mitochondrial dysfunction via equilibrative nucleoside transporters. Pulmonary Circulation, 2020, 10, 1-11.	1.7	4
29	Alterations in molecular chaperones and eIF2α during lung endothelial cell apoptosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L501-L508.	2.9	3
30	Where There's Smoke, There's Fire. Chest, 2020, 158, 1301-1302.	0.8	1
31	Pulmonary Endothelial Cell Death: Implications for Lung Disease Pathogenesis. , 0, , 241-260.		1
32	Cigarette smoke increases susceptibility to lung edema: Implication of RhoA and FAKâ€mediated disassembly of endothelial cytoskeleton and cell contacts. FASEB Journal, 2012, 26, 1063.6.	0.5	0