Lloyd W Sumner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4352545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NP-MRD: the Natural Products Magnetic Resonance Database. Nucleic Acids Research, 2022, 50, D665-D677.	14.5	39
2	Switchgrass Metabolomics Reveals Striking Genotypic and Developmental Differences in Specialized Metabolic Phenotypes. Journal of Agricultural and Food Chemistry, 2022, 70, 8010-8023.	5.2	9
3	Assessing Anti-Inflammatory Activities and Compounds in Switchgrass (Panicum virgatum). Agriculture (Switzerland), 2022, 12, 936.	3.1	2
4	Identification and quantification of bioactive compounds suppressing SARS-CoV-2 signals in wastewater-based epidemiology surveillance. Water Research, 2022, 221, 118824.	11.3	7
5	A Medicago truncatula Metabolite Atlas Enables the Visualization of Differential Accumulation of Metabolites in Root Tissues. Metabolites, 2021, 11, 238.	2.9	4
6	Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, 2021, 18, 747-756.	19.0	403
7	Bridging the Gap between Analytical and Microbial Sciences in Microbiome Research. MSystems, 2021, 6, e0058521.	3.8	4
8	Recent Developments Toward Integrated Metabolomics Technologies (UHPLC-MS-SPE-NMR and) Tj ETQq0 0 0 r Biosciences, 2021, 8, 720955.	gBT /Overl 3.5	ock 10 Tf 50 9
9	An Optimized SPME-GC-MS Method for Volatile Metabolite Profiling of Different Alfalfa (Medicago) Tj ETQq1 1 (0.784314 i 3.8	rgBT /Overlo
10	Proteomic and Metabolomic Analysis of <i>Azospirillum brasilense ntrC</i> Mutant under High and Low Nitrogen Conditions. Journal of Proteome Research, 2020, 19, 92-105.	3.7	14
11	Identification of health-promoting bioactive phenolics in black walnut using cloud-based metabolomics platform. Journal of Food Measurement and Characterization, 2020, 14, 770-777.	3.2	8
12	Protein Precipitation to Remove Carbohydrates that Interfere in Protein-Bound Tryptophan Quantification in Soybean Seeds. Journal of Analysis and Testing, 2020, 4, 238-247.	5.1	3
13	852 BILOPHILA WADSWORTHIA SUPPLEMENTATION REDUCES ADENOMA BURDEN IN THE APC-MIN MOUSE MODEL OF COLORECTAL CANCER. Gastroenterology, 2020, 158, S-173.	1.3	1
14	Role of cytosolic, tyrosineâ€insensitive prephenate dehydrogenase in <i>MedicagoÂtruncatula</i> . Plant Direct, 2020, 4, e00218.	1.9	7
15	Allelopathic Potential of Rice and Identification of Published Allelochemicals by Cloud-Based Metabolomics Platform. Metabolites, 2020, 10, 244.	2.9	9
16	Identification and Quantification of Bioactive Molecules Inhibiting Pro-inflammatory Cytokine Production in Spent Coffee Grounds Using Metabolomics Analyses. Frontiers in Pharmacology, 2020, 11, 229.	3.5	16
17	Integration of genomics, metagenomics, and metabolomics to identify interplay between susceptibility alleles and microbiota in adenoma initiation. BMC Cancer, 2020, 20, 600.	2.6	11
18	Developmental exposure of California mice to endocrine disrupting chemicals and potential effects on the microbiome-gut-brain axis at adulthood. Scientific Reports, 2020, 10, 10902.	3.3	23

#	Article	lF	CITATIONS
19	Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta–brain axis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4642-4652.	7.1	92
20	Generation of a Collision Cross Section Library for Multi-Dimensional Plant Metabolomics Using UHPLC-Trapped Ion Mobility-MS/MS. Metabolites, 2020, 10, 13.	2.9	52
21	Nontargeted fecal metabolomics: an emerging tool to probe the role of the gut microbiome in host health. Bioanalysis, 2020, 12, 351-353.	1.5	3
22	Modern Plant Metabolomics for the Discovery and Characterization of Natural Products and Their Biosynthetic Genes. , 2020, , 156-188.		1
23	Large-Scale Profiling of Saponins in Different Ecotypes of Medicago truncatula. Frontiers in Plant Science, 2019, 10, 850.	3.6	15
24	Black Walnut (Juglans nigra) Extracts Inhibit Proinflammatory Cytokine Production From Lipopolysaccharide-Stimulated Human Promonocytic Cell Line U-937. Frontiers in Pharmacology, 2019, 10, 1059.	3.5	12
25	Integrated metabolomics identifies CYP72A67 and CYP72A68 oxidases in the biosynthesis of Medicago truncatula oleanate sapogenins. Metabolomics, 2019, 15, 85.	3.0	26
26	12-Hydroxy-Jasmonoyl-I-Isoleucine Is an Active Jasmonate That Signals through CORONATINE INSENSITIVE 1 and Contributes to the Wound Response in Arabidopsis. Plant and Cell Physiology, 2019, 60, 2152-2166.	3.1	35
27	Ectopic Defense Gene Expression Is Associated with Growth Defects in <i>Medicago truncatula</i> Lignin Pathway Mutants. Plant Physiology, 2019, 181, 63-84.	4.8	27
28	UHPLCâ€MS Analyses of Plant Flavonoids. Current Protocols in Plant Biology, 2019, 4, e20085.	2.8	18
29	Identification and quantification of phytosterols in black walnut kernels. Journal of Food Composition and Analysis, 2019, 75, 61-69.	3.9	31
30	UHPLC-QTOF-MS/MS-SPE-NMR: A Solution to the Metabolomics Grand Challenge of Higher-Throughput, Confident Metabolite Identifications. Methods in Molecular Biology, 2019, 2037, 113-133.	0.9	24
31	Early genistein exposure of California mice and effects on the gut microbiota–brain axis. Journal of Endocrinology, 2019, 242, 139-157.	2.6	21
32	Seminal fluid metabolome and epididymal changes after antibiotic treatment in mice. Reproduction, 2018, 156, 1-10.	2.6	11
33	MetExpert: An expert system to enhance gas chromatography‒mass spectrometry-based metabolite identifications. Analytica Chimica Acta, 2018, 1037, 316-326.	5.4	30
34	Soy-Induced Fecal Metabolome Changes in Ovariectomized and Intact Female Rats: Relationship with Cardiometabolic Health. Scientific Reports, 2018, 8, 16896.	3.3	19
35	Metabolomics of Two Pecan Varieties Provides Insights into Scab Resistance. Metabolites, 2018, 8, 56.	2.9	8
36	Identifying Antibacterial Compounds in Black Walnuts (Juglans nigra) Using a Metabolomics Approach. Metabolites, 2018, 8, 58.	2.9	29

#	Article	IF	CITATIONS
37	Abatement of 2,4-D by H2O2 solar photolysis and solar photo-Fenton-like process with minute Fe(III) concentrations. Water Research, 2018, 144, 572-580.	11.3	39
38	Pathway-specific metabolome analysis with 18O2-labeled Medicago truncatula via a mass spectrometry-based approach. Metabolomics, 2018, 14, 71.	3.0	19
39	Abstract 4076: Gut microbiota and metabolite-driven phenotype modulation in a mouse model of colorectal cancer. , 2018, , .		0
40	Abstract 2400: Complex gut microbiota modulate rat colon adenoma susceptibility, metabolites, and host gene expression. , 2018, , .		0
41	Medicago truncatula Oleanolic-Derived Saponins Are Correlated with Caterpillar Deterrence. Journal of Chemical Ecology, 2017, 43, 712-724.	1.8	16
42	CASMI 2014: Challenges, Solutions and Results. Current Metabolomics, 2017, 5, 5-17.	0.5	8
43	The Time Is Right to Focus on Model Organism Metabolomes. Metabolites, 2016, 6, 8.	2.9	63
44	Malonylation of Glucosylated N-Lauroylethanolamine A NEW PATHWAY THAT DETERMINES N-ACYLETHANOLAMINE METABOLIC FATE IN PLANTS. Journal of Biological Chemistry, 2016, 291, 27112-27121.	3.4	12
45	Jasmonateâ€mediated stomatal closure under elevated <scp>CO</scp> ₂ revealed by timeâ€resolved metabolomics. Plant Journal, 2016, 88, 947-962.	5.7	87
46	PlantMAT: A Metabolomics Tool for Predicting the Specialized Metabolic Potential of a System and for Large-Scale Metabolite Identifications. Analytical Chemistry, 2016, 88, 11373-11383.	6.5	55
47	Loss of function of folylpolyglutamate synthetase 1 reduces lignin content and improves cell wall digestibility in Arabidopsis. Biotechnology for Biofuels, 2015, 8, 224.	6.2	27
48	Metabolite profiles of essential oils in citrus peels and their taxonomic implications. Metabolomics, 2015, 11, 952-963.	3.0	41
49	Introducing the USA Plant, Algae and Microbial Metabolomics Research Coordination Network (PAMM-NET). Metabolomics, 2015, 11, 3-5.	3.0	3
50	Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods. Journal of Chromatography A, 2015, 1412, 43-51.	3.7	47
51	Patterns of Metabolite Changes Identified from Large-Scale Gene Perturbations in Arabidopsis Using a Genome-Scale Metabolic Network Â. Plant Physiology, 2015, 167, 1685-1698.	4.8	55
52	Construction of an Ultrahigh Pressure Liquid Chromatography-Tandem Mass Spectral Library of Plant Natural Products and Comparative Spectral Analyses. Analytical Chemistry, 2015, 87, 7373-7381.	6.5	41
53	Integrated Metabolomics and Transcriptomics Reveal Enhanced Specialized Metabolism in <i>Medicago truncatula</i> Root Border Cells Â. Plant Physiology, 2015, 167, 1699-1716.	4.8	84
54	MET-XAlign: A Metabolite Cross-Alignment Tool for LC/MS-Based Comparative Metabolomics. Analytical Chemistry, 2015, 87, 9114-9119.	6.5	32

#	Article	IF	CITATIONS
55	Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Natural Product Reports, 2015, 32, 212-229.	10.3	190
56	Proposed quantitative and alphanumeric metabolite identification metrics. Metabolomics, 2014, 10, 1047-1049.	3.0	91
57	Metabolite identification: are you sure? And how do your peers gauge your confidence?. Metabolomics, 2014, 10, 350-353.	3.0	205
58	Antifungal Activity of Citrus Essential Oils. Journal of Agricultural and Food Chemistry, 2014, 62, 3011-3033.	5.2	174
59	MET-COFEA: A Liquid Chromatography/Mass Spectrometry Data Processing Platform for Metabolite Compound Feature Extraction and Annotation. Analytical Chemistry, 2014, 86, 6245-6253.	6.5	54
60	2014 Honorary fellows of the Metabolomics Society. Metabolomics, 2014, 10, 537-538.	3.0	0
61	Global reprogramming of transcription and metabolism in <scp><i>M</i></scp> <i>edicago truncatula</i> during progressive drought and after rewatering. Plant, Cell and Environment, 2014, 37, 2553-2576.	5.7	138
62	Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. BMC Plant Biology, 2013, 13, 65.	3.6	28
63	"Retention Projection―Enables Reliable Use of Shared Gas Chromatographic Retention Data Across Laboratories, Instruments, and Methods. Analytical Chemistry, 2013, 85, 11650-11657.	6.5	19
64	Functional Characterization of Proanthocyanidin Pathway Enzymes from Tea and Their Application for Metabolic Engineering Â. Plant Physiology, 2013, 161, 1103-1116.	4.8	130
65	Metabolomics across the globe. Metabolomics, 2013, 9, 258-264.	3.0	8
66	Characterization of the Formation of Branched Short-Chain Fatty Acid:CoAs for Bitter Acid Biosynthesis in Hop Glandular Trichomes. Molecular Plant, 2013, 6, 1301-1317.	8.3	64
67	The molecular and enzymatic basis of bitter/nonâ€bitter flavor of citrus fruit: evolution of branchâ€forming rhamnosyltransferases under domestication. Plant Journal, 2013, 73, 166-178.	5.7	92
68	Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis. Planta, 2013, 238, 139-154.	3.2	39
69	Sub-cellular proteomics of Medicago truncatula. Frontiers in Plant Science, 2013, 4, 112.	3.6	29
70	Influence of Host Chloroplast Proteins on <i>Tobacco mosaic virus</i> Accumulation and Intercellular Movement Á Â Â. Plant Physiology, 2012, 161, 134-147.	4.8	83
71	Characterization of an Isoflavonoid-Specific Prenyltransferase from <i>Lupinus albus</i> Â Â Â. Plant Physiology, 2012, 159, 70-80.	4.8	73
72	Expression of a bacterial feedbackâ€insensitive 3â€deoxyâ€ <scp>d</scp> â€arabinoâ€heptulosonate 7â€phospha synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytologist, 2012, 194, 430-439.	ate 7.3	98

#	Article	IF	CITATIONS
73	Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of "Unknown Function― Frontiers in Plant Science, 2012, 3, 15.	3.6	82
74	MET-IDEA version 2.06; improved efficiency and additional functions for mass spectrometry-based metabolomics data processing. Metabolomics, 2012, 8, 105-110.	3.0	28
75	Root Secreted Metabolites and Proteins Are Involved in the Early Events of Plant-Plant Recognition Prior to Competition. PLoS ONE, 2012, 7, e46640.	2.5	54
76	MATE2 Mediates Vacuolar Sequestration of Flavonoid Glycosides and Glycoside Malonates in <i>Medicago truncatula</i> Â Â Â. Plant Cell, 2011, 23, 1536-1555.	6.6	227
77	Mass Spectrometry Strategies in Metabolomics. Journal of Biological Chemistry, 2011, 286, 25435-25442.	3.4	396
78	A legume specific protein database (LegProt) improves the number of identified peptides, confidence scores and overall protein identification success rates for legume proteomics. Phytochemistry, 2011, 72, 1020-1027.	2.9	29
79	The Folylpolyglutamate Synthetase Plastidial Isoform Is Required for Postembryonic Root Development in Arabidopsis Â. Plant Physiology, 2011, 155, 1237-1251.	4.8	54
80	<i>STENOFOLIA</i> Regulates Blade Outgrowth and Leaf Vascular Patterning in <i>Medicago truncatula</i> and <i>Nicotiana sylvestris</i> Â Â Â. Plant Cell, 2011, 23, 2125-2142.	6.6	133
81	A Large-Scale Genetic Screen in Arabidopsis to Identify Genes Involved in Pollen Exine Production Â. Plant Physiology, 2011, 157, 947-970.	4.8	120
82	Methyl Jasmonate Induces ATP Biosynthesis Deficiency and Accumulation of Proteins Related to Secondary Metabolism in Catharanthus roseus (L.) G. Hairy Roots. Plant and Cell Physiology, 2011, 52, 1401-1421.	3.1	32
83	Suppression of Phospholipase DÎ ³ s Confers Increased Aluminum Resistance in Arabidopsis thaliana. PLoS ONE, 2011, 6, e28086.	2.5	45
84	Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biology, 2010, 10, 115.	3.6	107
85	<i>LAP5</i> and <i>LAP6</i> Encode Anther-Specific Proteins with Similarity to Chalcone Synthase Essential for Pollen Exine Development in Arabidopsis. Plant Physiology, 2010, 153, 937-955.	4.8	187
86	Root Secretion of Defense-related Proteins Is Development-dependent and Correlated with Flowering Time. Journal of Biological Chemistry, 2010, 285, 30654-30665.	3.4	103
87	Improvement of drought tolerance in white clover (Trifolium repens) by transgenic expression of a transcription factor gene WXP1. Functional Plant Biology, 2010, 37, 157.	2.1	21
88	Nonflowering Plants Possess a Unique Folate-Dependent Phenylalanine Hydroxylase That Is Localized in Chloroplasts. Plant Cell, 2010, 22, 3410-3422.	6.6	37
89	Soybean Metabolites Regulated in Root Hairs in Response to the Symbiotic Bacterium <i>Bradyrhizobium japonicum</i> Â Â Â. Plant Physiology, 2010, 153, 1808-1822.	4.8	132
90	Genomic and Coexpression Analyses Predict Multiple Genes Involved in Triterpene Saponin Biosynthesis in <i>Medicago truncatula</i> Â Â. Plant Cell, 2010, 22, 850-866.	6.6	168

#	Article	IF	CITATIONS
91	Comparative Proteomics of Yeast-ElicitedMedicago truncatulaCell Suspensions Reveals Induction of Isoflavonoid Biosynthesis and Cell Wall Modifications. Journal of Proteome Research, 2010, 9, 6220-6231.	3.7	12
92	PlantMetabolomics.org: A Web Portal for Plant Metabolomics Experiments. Plant Physiology, 2010, 152, 1807-1816.	4.8	93
93	Recent advances in plant metabolomics and greener pastures. F1000 Biology Reports, 2010, 2, .	4.0	12
94	TrichOME: A Comparative Omics Database for Plant Trichomes Â. Plant Physiology, 2009, 152, 44-54.	4.8	98
95	Integrated Metabolite and Transcript Profiling Identify a Biosynthetic Mechanism for Hispidol in <i>Medicago truncatula</i> Cell Cultures Â. Plant Physiology, 2009, 151, 1096-1113.	4.8	56
96	A WD40 Repeat Protein from <i>Medicago truncatula</i> Is Necessary for Tissue-Specific Anthocyanin and Proanthocyanidin Biosynthesis But Not for Trichome Development Â. Plant Physiology, 2009, 151, 1114-1129.	4.8	137
97	Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots. BMC Plant Biology, 2009, 9, 1.	3.6	182
98	Proteome analysis of <i>Pithecellobium dulce</i> seeds using twoâ€dimensional gel electrophoresis and tandem mass spectrometry. Journal of the Science of Food and Agriculture, 2009, 89, 1284-1291.	3.5	4
99	LAP3, a novel plant protein required for pollen development, is essential for proper exine formation. Sexual Plant Reproduction, 2009, 22, 167-177.	2.2	60
100	Current and emerging mass-spectrometry technologies for metabolomics. TrAC - Trends in Analytical Chemistry, 2008, 27, 238-250.	11.4	171
101	Subâ€lethal Levels of Electric Current Elicit the Biosynthesis of Plant Secondary Metabolites. Biotechnology Progress, 2008, 24, 377-384.	2.6	42
102	Virus infection improves drought tolerance. New Phytologist, 2008, 180, 911-921.	7.3	348
103	Metabolomics Reveals Novel Pathways and Differential Mechanistic and Elicitor-Specific Responses in Phenylpropanoid and Isoflavonoid Biosynthesis in <i>Medicago truncatula</i> Cell Cultures. Plant Physiology, 2008, 146, 323-324.	4.8	179
104	Altered Profile of Secondary Metabolites in the Root Exudates of Arabidopsis ATP-Binding Cassette Transporter Mutants. Plant Physiology, 2008, 146, 323-324.	4.8	158
105	Root-Microbe Communication through Protein Secretion. Journal of Biological Chemistry, 2008, 283, 25247-25255.	3.4	144
106	MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics, 2007, 23, 1418-1423.	4.1	89
107	Different mechanisms for phytoalexin induction by pathogen and wound signals in <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17909-17915.	7.1	180
108	Methods, applications and concepts of metabolite profiling: Secondary metabolism. , 2007, 97, 195-212.		7

#	Article	IF	CITATIONS
109	Amino acid profiling in plant cell cultures: An inter-laboratory comparison of CE-MS and GC-MS. Electrophoresis, 2007, 28, 1371-1379.	2.4	66
110	Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC–UV–ESI–MS and GC–MS. Phytochemistry, 2007, 68, 342-354.	2.9	144
111	The Metabolomics Standards Initiative. Nature Biotechnology, 2007, 25, 846-848.	17.5	328
112	Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics, 2007, 3, 195-201.	3.0	116
113	The metabolomics standards initiative (MSI). Metabolomics, 2007, 3, 175-178.	3.0	396
114	Proposed minimum reporting standards for chemical analysis. Metabolomics, 2007, 3, 211-221.	3.0	3,589
115	Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Molecular Biology, 2007, 64, 265-278.	3.9	162
116	Efficient and Sensitive Method for Quantitative Analysis of Alkaloids in Hardinggrass (Phalaris) Tj ETQq0 0 0 rgB1	Qverlock	2 10 Tf 50 46
117	MET-IDEA:Â Data Extraction Tool for Mass Spectrometry-Based Metabolomics. Analytical Chemistry, 2006, 78, 4334-4341.	6.5	249
118	GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 2006, 67, 2262-2268.	2.9	349
119	Functional analysis of members of the isoflavone and isoflavanone O-methyltransferase enzyme families from the model legume Medicago truncatula. Plant Molecular Biology, 2006, 62, 715-733.	3.9	61
120	Establishing Reporting Standards for Metabolomic and Metabonomic Studies: A Call for Participation. OMICS A Journal of Integrative Biology, 2006, 10, 158-163.	2.0	100
121	Metabolomics Data Analysis, Visualization, and Integration. , 2005, 406, 409-436.		33
122	Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant Journal, 2005, 41, 875-887.	5.7	262
123	Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant Journal, 2005, 42, 689-707.	5.7	388
124	Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biology, 2005, 5, 8.	3.6	90
125	Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta, 2005, 220, 696-707.	3.2	175
	A Two-dimensional Electrophoresis Proteomic Reference Map and Systematic Identification of 1367		

A Two-dimensional Electrophoresis Proteomic Reference Map and Systematic Identification of 1367 126 Proteins from a Cell Suspension Culture of the Model Legume Medicago truncatula. Molecular and 3.8 108 Cellular Proteomics, 2005, 4, 1812-1825.

#	Article	IF	CITATIONS
127	Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. Journal of Experimental Botany, 2005, 56, 323-336.	4.8	347
128	Metabolic Engineering of Plant Cells for Biotransformation of Hesperedin into Neohesperidin, a Substrate for Production of the Low-Calorie Sweetener and Flavor Enhancer NHDC. Journal of Agricultural and Food Chemistry, 2005, 53, 9708-9712.	5.2	39
129	Quantification of Saponins in Aerial and Subterranean Tissues ofMedicago truncatula. Journal of Agricultural and Food Chemistry, 2005, 53, 1914-1920.	5.2	108
130	Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant Journal, 2004, 40, 88-100.	5.7	152
131	A proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnology, 2004, 22, 1601-1606.	17.5	283
132	Proteomics of Medicago sativa cell walls. Phytochemistry, 2004, 65, 1709-1720.	2.9	113
133	Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 2004, 9, 418-425.	8.8	685
134	Apoplastic Extracts from a Transgenic Wheat Line Exhibiting Lesion-Mimic Phenotype Have Multiple Pathogenesis-Related Proteins That Are Antifungal. Molecular Plant-Microbe Interactions, 2004, 17, 1306-1317.	2.6	33
135	Plant Metabolomics: Large-Scale Phytochemistry in the Functional Genomics Era ChemInform, 2003, 34, no.	0.0	1
136	Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry, 2003, 62, 817-836.	2.9	1,010
137	Profiling phenolic metabolites in transgenic alfalfa modified in lignin biosynthesis. Phytochemistry, 2003, 64, 1013-1021.	2.9	68
138	Regiospecific hydroxylation of isoflavones by cytochrome P450 81E enzymes fromMedicago truncatula. Plant Journal, 2003, 36, 471-484.	5.7	132
139	Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics, 2003, 19, 2283-2293.	4.1	187
140	Mapping the Proteome of Barrel Medic (<i>Medicago truncatula</i>),. Plant Physiology, 2003, 131, 1104-1123.	4.8	217
141	Legume Natural Products: Understanding and Manipulating Complex Pathways for Human and Animal Health. Plant Physiology, 2003, 131, 878-885.	4.8	269
142	Chapter Three Metabolomics: A developing and integral component in functional genomic studies of medicago truncatula. Recent Advances in Phytochemistry, 2002, , 31-61.	0.5	11
143	Analytical and biological variances associated with proteomic studies of Medicago truncatula by two-dimensional polyacrylamide gel electrophoresis. Proteomics, 2002, 2, 960.	2.2	81
144	Over-expression of cinnamate 4-hydroxylase leads to increased accumulation of acetosyringone in elicited tobacco cell-suspension cultures. Planta, 2002, 214, 902-910.	3.2	28

2

#	Article	IF	CITATIONS
145	Silver stain removal using H2O2 for enhanced peptide mass mapping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2002, 16, 160-168.	1.5	31
146	Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry, 2002, 59, 347-360.	2.9	211
147	Characterization of Proteins Utilized in the Desulfurization of Petroleum Products by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Analytical Biochemistry, 1998, 260, 117-127.	2.4	6
148	Pentacoordinate (μ-Oxo)diiron(III) Thiolate Complexes and Dimeric Iron(II) Precursors. Inorganic Chemistry, 1998, 37, 4086-4093.	4.0	37
149	Template Effect for O2Addition acrosscis-Sulfur Sites in Nickel Dithiolates. Journal of the American Chemical Society, 1996, 118, 1791-1792.	13.7	57
150	High-performance Liquid Chromatography/Continuous-flow Liquid Secondary Ion Mass Spectrometry of Flavonoid Glycosides in Leguminous Plant Extracts. , 1996, 31, 472-485.		53
151	A novel mobile phase for continuous-flow liquid secondary ion mass spectrometry of high molecular mass phthalocyanines. Organic Mass Spectrometry, 1993, 28, 475-477.	1.3	0
152	Determination of cinnamic acid and 4-coumaric acid in alfalfa (Medicago sativa L.) cell suspension cultures by gas chromatography. Phytochemical Analysis, 1993, 4, 124-130.	2.4	6
153	Citrate is a major component of snake venoms. Toxicon, 1992, 30, 461-464.	1.6	32

154 Proteomics of Legume Plants. , 0, , 179-189.