
David Filgueiras-Rama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/435200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dominant Frequency Increase Rate Predicts Transition from Paroxysmal to Long-Term Persistent Atrial Fibrillation. Circulation, 2014, 129, 1472-1482.	1.6	144
2	Cause of Complete Atrioventricular Block After Percutaneous Aortic Valve Implantation. Circulation, 2009, 120, e29-30.	1.6	124
3	Mechanisms and Drug Development in Atrial Fibrillation. Pharmacological Reviews, 2018, 70, 505-525.	16.0	67
4	Long-Term Frequency Gradients During Persistent Atrial Fibrillation in Sheep Are Associated With Stable Sources in the Left Atrium. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 1160-1167.	4.8	65
5	Targeting atrioventricular differences in ion channel properties for terminating acute atrial fibrillation in pigs. Cardiovascular Research, 2011, 89, 843-851.	3.8	46
6	Influence of Baseline Physical Activity as a Modifying Factor on COVID-19 Mortality: A Single-Center, Retrospective Study. Infectious Diseases and Therapy, 2021, 10, 801-814.	4.0	46
7	Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome. Cell Discovery, 2019, 5, 16.	6.7	43
8	Letter by Jalife et al Regarding Article, "Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation― Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1296-1298.	4.8	42
9	Cardiac electrical defects in progeroid mice and Hutchinson–Gilford progeria syndrome patients with nuclear lamina alterations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7250-E7259.	7.1	39
10	Chloroquine Terminates Stretch-Induced Atrial Fibrillation More Effectively Than Flecainide in the Sheep Heart. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 561-570.	4.8	38
11	Mechanistic Approaches to Detect, Target, and Ablate the Drivers of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e002481.	4.8	38
12	Tbx20 controls the expression of the <i>KCNH2</i> gene and of hERG channels. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E416-E425.	7.1	38
13	In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models. Cardiovascular Research, 2019, 115, 1659-1671.	3.8	38
14	Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models. Scientific Reports, 2017, 7, 43217.	3.3	34
15	Ectopic and reentrant activation patterns in the posterior left atrium during stretch-related atrial fibrillation. Progress in Biophysics and Molecular Biology, 2012, 110, 269-277.	2.9	29
16	Remote Magnetic Navigation for Accurate, Real-time Catheter Positioning and Ablation in Cardiac Electrophysiology Procedures. Journal of Visualized Experiments, 2013, , .	0.3	29
17	Effects of Fibrosis Morphology on Reentrant Ventricular Tachycardia Inducibility and Simulation Fidelity in Patient-Derived Models. Clinical Medicine Insights: Cardiology, 2014, 8s1, CMC.S15712.	1.8	29
18	Long-Term Outcome After Ablation of Right Atrial Tachyarrhythmias After the Surgical Repair ofÂCongenital and Acquired Heart Disease. American Journal of Cardiology, 2015, 115, 1705-1713.	1.6	28

#	Article	IF	CITATIONS
19	Human influenza A virus causes myocardial and cardiac-specific conduction system infections associated with early inflammation and premature death. Cardiovascular Research, 2021, 117, 876-889.	3.8	27
20	Utility of Intracardiac Echocardiography for Catheter Ablation of Complex Cardiac Arrhythmias in a Mediumâ€Volume Training Center. Echocardiography, 2015, 32, 660-670.	0.9	21
21	Instantaneous Amplitude and Frequency Modulations Detect the Footprint of Rotational Activity and Reveal Stable Driver Regions as Targets for Persistent Atrial Fibrillation Ablation. Circulation Research, 2019, 125, 609-627.	4.5	20
22	Implantation of cardioverter defibrillators with minimal fluoroscopy using a three-dimensional navigation system: a feasibility study. Europace, 2013, 15, 1763-1770.	1.7	17
23	Increased intraventricular pressures are as harmful as the electrophysiological substrate of heart failure in favoring sustained reentry in the swine heart. Heart Rhythm, 2015, 12, 2172-2183.	0.7	17
24	Organized Atrial Tachycardias after Atrial Fibrillation Ablation. Cardiology Research and Practice, 2011, 2011, 1-16.	1.1	16
25	Personalized monitoring of electrical remodelling during atrial fibrillation progression via remote transmissions from implantable devices. Europace, 2020, 22, 704-715.	1.7	16
26	Atrial Arrhythmias in Obstructive Sleep Apnea: Underlying Mechanisms and Implications in the Clinical Setting. Pulmonary Medicine, 2013, 2013, 1-9.	1.9	15
27	Safety threshold of R-wave amplitudes in patients with implantable cardioverter defibrillator. Heart, 2016, 102, 1662-1670.	2.9	15
28	Tbx5 variants disrupt Nav1.5 function differently in patients diagnosed with Brugada or Long QT Syndrome. Cardiovascular Research, 2022, 118, 1046-1060.	3.8	15
29	Novel approaches to mechanism-based atrial fibrillation ablation. Cardiovascular Research, 2021, 117, 1662-1681.	3.8	15
30	Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from <i>in vivo</i> MRI*. Measurement Science and Technology, 2012, 23, 125405.	2.6	14
31	High-Resolution Endocardial and Epicardial Optical Mapping in a Sheep Model of Stretch-Induced Atrial Fibrillation. Journal of Visualized Experiments, 2011, , .	0.3	13
32	Structural and Functional Bases of CardiacÂFibrillation. JACC: Clinical Electrophysiology, 2016, 2, 1-13.	3.2	13
33	3D Transesophageal Echocardiographic Guidance and Monitoring of Percutaneous Aortic Valve Replacement. Echocardiography, 2010, 27, 84-86.	0.9	12
34	Atrial fibrillation in young stroke patients: do we underestimate its prevalence?. European Journal of Neurology, 2013, 20, 1367-1374.	3.3	12
35	Impact of previous cardiac surgery on long-term outcome of cavotricuspid isthmus-dependent atrial flutter ablation. Europace, 2016, 18, 873-880.	1.7	12
36	Three-dimensional cardiac fibre disorganization as a novel parameter for ventricular arrhythmia stratification after myocardial infarction. Europace, 2019, 21, 822-832.	1.7	12

#	Article	IF	CITATIONS
37	Paclitaxel mitigates structural alterations and cardiac conduction system defects in a mouse model of Hutchinson–Gilford progeria syndrome. Cardiovascular Research, 2022, 118, 503-516.	3.8	12
38	Mechanisms by Which Ranolazine Terminates Paroxysmal but Not Persistent Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e005557.	4.8	10
39	Spectral analysis-based risk score enables early prediction of mortality and cerebral performance in patients undergoing therapeutic hypothermia for ventricular fibrillation and comatose status. International Journal of Cardiology, 2015, 186, 250-258.	1.7	9
40	QRS duration reflects underlying changes in conduction velocity during increased intraventricular pressure and heart failure. Progress in Biophysics and Molecular Biology, 2017, 130, 394-403.	2.9	9
41	Electrocardiographic Abnormalities in Patients With Hutchinson-Gilford Progeria Syndrome. JAMA Cardiology, 2018, 3, 1024.	6.1	9
42	Mapping Technologies for Catheter Ablation of Atrial Fibrillation Beyond Pulmonary Vein Isolation. European Cardiology Review, 2021, 16, e21.	2.2	9
43	Implications of bipolar voltage mapping and magnetic resonance imaging resolution in biventricular scar characterization after myocardial infarction. Europace, 2019, 21, 163-174.	1.7	8
44	A recidivant primary cardiac osteosarcoma: the role of bone scans. Cardiovascular Pathology, 2010, 19, 55-58.	1.6	7
45	Lesion Index Titration Using Contact-Force Technology Enables Safe and Effective Radiofrequency Lesion Creation at the Root of the Aorta and Pulmonary Artery. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007080.	4.8	6
46	Surface and Intramural Reentrant Patterns during Atrial Fibrillation in the Sheep. Methods of Information in Medicine, 2014, 53, 314-319.	1.2	5
47	Anatomical targets and expected outcomes of catheterâ€based ablation of atrial fibrillation in 2020. PACE - Pacing and Clinical Electrophysiology, 2021, 44, 341-359.	1.2	5
48	Challenges and opportunities in improving the management of atrial fibrillation: recent research advances and their clinical translation. Cardiovascular Research, 2021, 117, 1609-1611.	3.8	5
49	Polyunsaturated Fatty Acids in Atrial Fibrillation: Looking for the Proper Candidates. Frontiers in Physiology, 2012, 3, 370.	2.8	4
50	Colchicine After Pulmonary Vein Isolation: Is Inflammation the New Anti-Arrhythmic Target. Journal of the American College of Cardiology, 2013, 61, 1464-1465.	2.8	3
51	Early prognostic value of an Algorithm based on spectral Variables of Ventricular fibrillAtion from the EKG of patients with suddEn cardiac death: A multicentre observational study (AWAKE). Archivos De Cardiologia De Mexico, 2018, 88, 460-467.	0.2	3
52	Mechanisms Underlying Atrial Fibrillation. Cardiac Electrophysiology Clinics, 2011, 3, 141-156.	1.7	2
53	Myocardial Extracellular Volume Is Not Associated With Malignant Ventricular Arrhythmias in High-risk Hypertrophic Cardiomyopathy. Revista Espanola De Cardiologia (English Ed), 2017, 70, 933-940.	0.6	2
54	El volumen extracelular no se asocia a arritmias malignas en miocardiopatÃa hipertrófica de alto riesgo. Revista Espanola De Cardiologia, 2017, 70, 933-940.	1.2	2

DAVID FILGUEIRAS-RAMA

#	Article	IF	CITATIONS
55	What is behind radiofrequency delivery at the cavo-tricuspid isthmus?. Archivos De Cardiologia De Mexico, 2014, 84, 51-52.	0.2	2
56	Dronedarone: An Option in the Treatment of Ventricular Arrhythmias. Revista Espanola De Cardiologia (English Ed), 2013, 66, 668-670.	0.6	1
57	Propagation of Sinus Waves in the Atrial Architecture. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	1
58	Ventricular fibrillation undersensing to calculate a safety threshold for baseline rhythm R-wave amplitudes. Journal of Electrocardiology, 2018, 51, 1159-1160.	0.9	1
59	A lucky cardiac shotgun?. European Heart Journal Cardiovascular Imaging, 2009, 10, 462-463.	1.2	Ο
60	Corrigendum to: Targeting atrioventricular differences in ion channel properties for terminating acute atrial fibrillation in pigs. Cardiovascular Research, 2011, 92, 358-358.	3.8	0
61	Letter by Filgueiras-Rama et al Regarding Article, "Maximal Electric Separation-Guided Placement of Right Ventricular Lead Improves Responders in Cardiac Resynchronization Defibrillator Therapy―by Miranda et al. Circulation: Arrhythmia and Electrophysiology, 2013, 6, e24.	4.8	Ο
62	Entrainment from the right ventricle distinguishes fast-slow AV nodal reentrant tachycardia from permanent junctional reciprocating tachycardia. European Heart Journal, 2013, 34, P4970-P4970.	2.2	0
63	Revolving thrombus within the left atrium at atrial fibrillation ablation. Herzschrittmachertherapie Und Elektrophysiologie, 2015, 26, 54-55.	0.8	Ο
64	Selección de lo mejor del año 2016 en ablación con catéter. Revista Espanola De Cardiologia, 2017, 70, 302-303.	1.2	0
65	Selection of the Best of 2016 in Catheter Ablation. Revista Espanola De Cardiologia (English Ed), 2017, 70, 302-303.	0.6	0
66	Cardiac tamponade during catheter-based ablation of cardiac arrhythmias: experience matters. Journal of Xiangya Medicine, 0, 2, 10-10.	0.2	0