
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/435101/publications.pdf Version: 2024-02-01

CADY FISHIM

#	Article	IF	CITATIONS
1	Combined traumatic brain injury and hemorrhagic shock in ferrets leads to structural, neurochemical, and functional impairments. Journal of Neurotrauma, 2022, , .	3.4	4
2	Hyperhomocysteinemia-Induced Oxidative Stress Exacerbates Cortical Traumatic Brain Injury Outcomes in Rats. Cellular and Molecular Neurobiology, 2021, 41, 487-503.	3.3	22
3	Hypobaria-Induced Oxidative Stress Facilitates Homocysteine Transsulfuration and Promotes Glutathione Oxidation in Rats with Mild Traumatic Brain Injury. Journal of Central Nervous System Disease, 2021, 13, 117957352098819.	1.9	6
4	Air-Evacuation-Relevant Hypobaria Following Traumatic Brain Injury Plus Hemorrhagic Shock in Rats Increases Mortality and Injury to the Gut, Lungs, and Kidneys. Shock, 2021, 56, 793-802.	2.1	4
5	Enhancing Metabolic Imaging of Energy Metabolism in Traumatic Brain Injury Using Hyperpolarized [1-13C]Pyruvate and Dichloroacetate. Metabolites, 2021, 11, 335.	2.9	4
6	A Nonlethal Murine Flame Burn Model Leads to a Transient Reduction in Host Defenses and Enhanced Susceptibility to Lethal Pseudomonas aeruginosa Infection. Infection and Immunity, 2021, 89, e0009121.	2.2	4
7	Hypobaria Exposure Worsens Cardiac Function and Endothelial Injury in AN Animal Model of Polytrauma: Implications for Aeromedical Evacuation. Shock, 2021, 56, 601-610.	2.1	6
8	A non-lethal full-thickness flame burn produces a seroma beneath the forming eschar thereby promoting Pseudomonas aeruginosa sepsis in mice. Journal of Burn Care and Research, 2021, , .	0.4	2
9	Editorial: Mitochondria and neurological diseases. Experimental Neurology, 2020, 334, 113467.	4.1	0
10	Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Experimental Neurology, 2020, 328, 113247.	4.1	35
11	Oximetry-Guided normoxic resuscitation following canine cardiac arrest reduces cerebellar Purkinje neuronal damage. Resuscitation, 2019, 140, 23-28.	3.0	5
12	A review and synthesis of correlates of fatigue in osteoarthritis. International Journal of Orthopaedic and Trauma Nursing, 2019, 33, 4-10.	0.9	15
13	Post-stroke fatigue as an indicator of underlying bioenergetics alterations. Journal of Bioenergetics and Biomembranes, 2019, 51, 165-174.	2.3	9
14	Platelets in preeclamptic pregnancies fail to exhibit the decrease in mitochondrial oxygen consumption rate seen in normal pregnancies. Bioscience Reports, 2018, 38, .	2.4	7
15	Effect of hypobaria and hyperoxia during sepsis on survival and energy metabolism. Journal of Trauma and Acute Care Surgery, 2018, 85, S68-S76.	2.1	4
16	Calcium uptake and cytochrome c release from normal and ischemic brain mitochondria. Neurochemistry International, 2018, 117, 15-22.	3.8	18
17	Sex differences in the mitochondrial bioenergetics of astrocytes but not microglia at a physiologically relevant brain oxygen tension. Neurochemistry International, 2018, 117, 82-90.	3.8	24
18	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	11.2	120

#	Article	IF	CITATIONS
19	Rat Model of Brain Injury to Occupants of Vehicles Targeted by Land Mines: Mitigation by Elastomeric Frame Designs. Journal of Neurotrauma, 2018, 35, 1192-1203.	3.4	9
20	Ultrastructural Analysis of Platelets During Storage in Different Buffers. Microscopy and Microanalysis, 2018, 24, 1250-1251.	0.4	0
21	Aeromedical evacuation-relevant hypobaria worsens axonal and neurologic injury in rats after underbody blast-induced hyperacceleration. Journal of Trauma and Acute Care Surgery, 2017, 83, S35-S42.	2.1	15
22	Central Nervous System Changes Induced by Underbody Blast-Induced Hyperacceleration: An <i>in Vivo</i> Diffusion Tensor Imaging and Magnetic Resonance Spectroscopy Study. Journal of Neurotrauma, 2017, 34, 1972-1980.	3.4	9
23	Neuropathology and neurobehavioral alterations in a rat model of traumatic brain injury to occupants of vehicles targeted by underbody blasts. Experimental Neurology, 2017, 289, 9-20.	4.1	10
24	Sexâ€dependent mitochondrial respiratory impairment and oxidative stress in a rat model of neonatal hypoxicâ€ischemic encephalopathy. Journal of Neurochemistry, 2016, 137, 714-729.	3.9	67
25	Sex dependent alterations in mitochondrial electron transport chain proteins following neonatal rat cerebral hypoxic-ischemia. Journal of Bioenergetics and Biomembranes, 2016, 48, 591-598.	2.3	24
26	Effect of cardiopulmonary bypass on platelet mitochondrial respiration and correlation with aggregation and bleeding: a pilot study. Perfusion (United Kingdom), 2016, 31, 508-515.	1.0	13
27	Simulated Aeromedical Evacuation Exacerbates Experimental Brain Injury. Journal of Neurotrauma, 2016, 33, 1292-1302.	3.4	29
28	Permeability transition pore-dependent and PARP-mediated depletion of neuronal pyridine nucleotides during anoxia and glucose deprivation. Journal of Bioenergetics and Biomembranes, 2015, 47, 53-61.	2.3	12
29	Rat model of brain injury caused by under-vehicle blast-induced hyperacceleration. Journal of Trauma and Acute Care Surgery, 2014, 77, S83-S87.	2.1	8
30	Augmentation of Normal and Glutamate-Impaired Neuronal Respiratory Capacity by Exogenous Alternative Biofuels. Translational Stroke Research, 2013, 4, 643-651.	4.2	19
31	Cerebral Glucose Metabolism in an Immature Rat Model of Pediatric Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 2066-2072.	3.4	27
32	Novel Mitochondrial Targets for Neuroprotection. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1362-1376.	4.3	128
33	Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion. Journal of Bioenergetics and Biomembranes, 2012, 44, 253-263.	2.3	57
34	Mitochondrial Antioxidants in Neuroprotection. Oxidative Stress and Disease, 2012, , 469-492.	0.3	0
35	Mitochondrial Mechanisms of Neural Cell Death in Cerebral Ischemia. , 2011, , 153-163.		2
36	Sulforaphane inhibits mitochondrial permeability transition and oxidative stress. Free Radical Biology and Medicine, 2011, 51, 2164-2171.	2.9	74

#	Article	IF	CITATIONS
37	Influence of aging on membrane permeability transition in brain mitochondria. Journal of Bioenergetics and Biomembranes, 2011, 43, 3-10.	2.3	62
38	Effects of FK506 and cyclosporin a on calcium ionophoreâ€induced mitochondrial depolarization and cytosolic calcium in astrocytes and neurons. Journal of Neuroscience Research, 2011, 89, 1973-1978.	2.9	20
39	Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation. Journal of Neuroscience Research, 2010, 88, 1355-1363.	2.9	75
40	Brain mitochondria from rats treated with sulforaphane are resistant to redox-regulated permeability transition. Journal of Bioenergetics and Biomembranes, 2010, 42, 491-497.	2.3	49
41	Visualization and quantification of NAD(H) in brain sections by a novel histo-enzymatic nitrotetrazolium blue staining technique. Brain Research, 2010, 1316, 112-119.	2.2	12
42	Metabolism of acetylâ€l arnitine for energy and neurotransmitter synthesis in the immature rat brain. Journal of Neurochemistry, 2010, 114, 820-831.	3.9	90
43	Neuroprotection through Stimulation of Mitochondrial Antioxidant Protein Expression. Journal of Alzheimer's Disease, 2010, 20, S427-S437.	2.6	33
44	Hyperoxic Reperfusion after Global Cerebral Ischemia Promotes Inflammation and Long-Term Hippocampal Neuronal Death. Journal of Neurotrauma, 2010, 27, 753-762.	3.4	87
45	Neuroprotection by Acetyl- <i>L</i> -Carnitine after Traumatic Injury to the Immature Rat Brain. Developmental Neuroscience, 2010, 32, 480-487.	2.0	102
46	Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia, 2009, 57, 645-656.	4.9	118
47	Nrf2 activators provide neuroprotection against 6â€hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures. Journal of Neuroscience Research, 2009, 87, 1659-1669.	2.9	81
48	Delayed cerebral oxidative glucose metabolism after traumatic brain injury in young rats. Journal of Neurochemistry, 2009, 109, 189-197.	3.9	57
49	Mitochondrial mechanisms of cell death and neuroprotection in pediatric ischemic and traumatic brain injury. Experimental Neurology, 2009, 218, 371-380.	4.1	122
50	Neuroprotection after Cardiac Arrest by Avoiding Acute Hyperoxia and by Antioxidant Genomic Postconditioning. Oxidative Stress and Disease, 2009, , .	0.3	0
51	Postnatal developmental regulation of Bclâ€2 family proteins in brain mitochondria. Journal of Neuroscience Research, 2008, 86, 1267-1276.	2.9	34
52	Hyperoxia promotes astrocyte cell death after oxygen and glucose deprivation. Glia, 2008, 56, 801-808.	4.9	40
53	Postischemic Oxidative Stress Promotes Mitochondrial Metabolic Failure in Neurons and Astrocytes. Annals of the New York Academy of Sciences, 2008, 1147, 129-138.	3.8	39
54	Normoxic ventilatory resuscitation following controlled cortical impact reduces peroxynitrite-mediated protein nitration in the hippocampus. Journal of Neurosurgery, 2008, 108, 124-131.	1.6	31

#	Article	IF	CITATIONS
55	Early and Sustained Alterations in Cerebral Metabolism after Traumatic Brain Injury in Immature Rats. Journal of Neurotrauma, 2008, 25, 603-614.	3.4	54
56	Hyperoxic Reperfusion After Global Ischemia Decreases Hippocampal Energy Metabolism. Stroke, 2007, 38, 1578-1584.	2.0	135
57	Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. Journal of Neuroscience Research, 2007, 85, 3407-3415.	2.9	103
58	Mitochondrial dysfunction early after traumatic brain injury in immature rats. Journal of Neurochemistry, 2007, 101, 1248-1257.	3.9	86
59	Anoxia-Induced Changes in Pyridine Nucleotide Redox State in Cortical Neurons and Astrocytes. Neurochemical Research, 2007, 32, 799-806.	3.3	13
60	Normoxic Resuscitation after Cardiac Arrest Protects against Hippocampal Oxidative Stress, Metabolic Dysfunction, and Neuronal Death. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 821-835.	4.3	193
61	Cyclosporin a Increases Mitochondrial Calcium Uptake Capacity in Cortical Astrocytes but not Cerebellar Granule Neurons. Journal of Bioenergetics and Biomembranes, 2006, 38, 43-47.	2.3	49
62	Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity. Free Radical Biology and Medicine, 2006, 40, 1960-1970.	2.9	72
63	Oximetry-Guided Reoxygenation Improves Neurological Outcome After Experimental Cardiac Arrest. Stroke, 2006, 37, 3008-3013.	2.0	184
64	The Potential Role of Mitochondria in Pediatric Traumatic Brain Injury. Developmental Neuroscience, 2006, 28, 432-446.	2.0	59
65	Pyruvate dehydrogenase complex: Metabolic link to ischemic brain injury and target of oxidative stress. Journal of Neuroscience Research, 2005, 79, 240-247.	2.9	136
66	Mechanisms of Ischemic Neuroprotection by Acetyl-I-carnitine. Annals of the New York Academy of Sciences, 2005, 1053, 153-161.	3.8	112
67	Oxygen: could there be too much of a good thing?. British Journal of Hospital Medicine (London,) Tj ETQq1 1 C).784314 rg 0.5	BT ¦Overlock
68	Redox Mechanisms of Cytoprotection by Bcl-2. Antioxidants and Redox Signaling, 2005, 7, 508-514.	5.4	82
69	Delayed therapy of experimental global cerebral ischemia with acetyl-l-carnitine in dogs. Neuroscience Letters, 2005, 378, 82-87.	2.1	13
70	Mechanisms of Ischemic Neuroprotection by Acetylâ€lâ€carnitine. Annals of the New York Academy of Sciences, 2005, 1053, 153-161.	3.8	44
71	Hyperoxidation of NAD(P)H redox state after anoxia and reoxygenation: Effects of nitric oxide and PARP-1 inhibition. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S77-S77.	4.3	1
72	Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic failure, and neuronal death. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S42-S42.	4.3	0

#	Article	IF	CITATIONS
73	Mitochondrial mechanisms of neural cell apoptosis. Journal of Neurochemistry, 2004, 90, 1281-1289.	3.9	295
74	Mitochondrial response to calcium in the developing brain. Developmental Brain Research, 2004, 151, 141-148.	1.7	35
75	Bcl-2 family proteins regulate mitochondrial reactive oxygen production and protect against oxidative stress. Free Radical Biology and Medicine, 2004, 37, 1845-1853.	2.9	77
76	Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium, 2004, 36, 257-264.	2.4	298
77	Protection Against Ischemic Brain Injury by Inhibition of Mitochondrial Oxidative Stress. Journal of Bioenergetics and Biomembranes, 2004, 36, 347-352.	2.3	137
78	Introduction: Mitochondria and Neuroprotection—In Memory of Albert L. Lehninger. Journal of Bioenergetics and Biomembranes, 2004, 36, 275-276.	2.3	0
79	A fluorescence-based technique for screening compounds that protect against damage to brain mitochondria. Brain Research Protocols, 2004, 13, 176-182.	1.6	22
80	Early processing of Bid and caspase-6, -8, -10, -14 in the canine brain during cardiac arrest and resuscitation. Experimental Neurology, 2004, 189, 261-279.	4.1	49
81	Cyclosporin A-insensitive Permeability Transition in Brain Mitochondria. Journal of Biological Chemistry, 2003, 278, 27382-27389.	3.4	123
82	Inhibition of Bax-Induced Cytochrome <i>c</i> Release from Neural Cell and Brain Mitochondria by Dibucaine and Propranolol. Journal of Neuroscience, 2003, 23, 2735-2743.	3.6	73
83	Mitochondrial Mechanisms of Neural Cell Death and Neuroprotective Interventions in Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 991, 111-119.	3.8	216
84	Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. Journal of Neurochemistry, 2002, 83, 220-228.	3.9	215
85	Heterogeneity of the calcium-induced permeability transition in isolated non-synaptic brain mitochondria. Journal of Neurochemistry, 2002, 83, 1297-1308.	3.9	71
86	ATP synthesis is coupled to rat liver mitochondrial RNA synthesis. Molecular and Cellular Biochemistry, 2001, 221, 3-10.	3.1	8
87	BH3 Death Domain Peptide Induces Cell Type-selective Mitochondrial Outer Membrane Permeability. Journal of Biological Chemistry, 2001, 276, 37887-37894.	3.4	119
88	Mitochondrial Participation in Ischemic and Traumatic Neural Cell Death. Journal of Neurotrauma, 2000, 17, 843-855.	3.4	328
89	Neuronal Subclass-Selective Loss of Pyruvate Dehydrogenase Immunoreactivity Following Canine Cardiac Arrest and Resuscitation. Experimental Neurology, 2000, 161, 115-126.	4.1	47
90	Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver. Cell Death and Differentiation, 1999, 6, 825-832.	11.2	177

GARY FISKUM

#	Article	IF	CITATIONS
91	Mitochondria in Neurodegeneration: Acute Ischemia and Chronic Neurodegenerative Diseases. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 351-369.	4.3	324
92	Bcl-2 and Ca2+-mediated mitochondrial dysfunction in neural cell death. Biochemical Society Symposia, 1999, 66, 33-41.	2.7	20
93	Cytochromecrelease from brain mitochondria is independent of the mitochondrial permeability transition. FEBS Letters, 1998, 439, 373-376.	2.8	134
94	Normoxic Ventilation After Cardiac Arrest Reduces Oxidation of Brain Lipids and Improves Neurological Outcome. Stroke, 1998, 29, 1679-1686.	2.0	185
95	Neuroprotective Effects of Acetyl-I-Carnitine After Stroke in Rats. Annals of Emergency Medicine, 1997, 29, 758-765.	0.6	47
96	Shift of the Cellular Oxidationâ€Reduction Potential in Neural Cells Expressing Bclâ€2. Journal of Neurochemistry, 1996, 67, 1259-1267.	3.9	203
97	Bclâ€2 Protects Neural Cells from Cyanide/Aglycemiaâ€Induced Lipid Oxidation, Mitochondrial Injury, and Loss of Viability. Journal of Neurochemistry, 1995, 65, 2432-2440.	3.9	109
98	Postischemic inhibition of cerebral cortex pyruvate dehydrogenase. Free Radical Biology and Medicine, 1994, 16, 811-820.	2.9	125
99	Increased Activation of Lâ€Type Voltageâ€Dependent Calcium Channels Is Associated with Glycine Enhancement of <i>N</i> â€Methylâ€ <scp>d</scp> â€Aspartateâ€Stimulated Dopamine Release in Global Cerebra Ischemia/Reperfusion. Journal of Neurochemistry, 1994, 63, 215-221.	al 3.9	13
100	Inhibition of postcardiac arrest brain protein oxidation by acetyl-l-carnitine. Free Radical Biology and Medicine, 1993, 15, 667-670.	2.9	67
101	Alteration of Voltage-Dependent Calcium Channels in Canine Brain during Clobal Ischemia and Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 418-424.	4.3	23
102	Cerebral Ischemia and Reperfusion: Prevention of Brain Mitochondrial Injury by Lidoflazine. Journal of Cerebral Blood Flow and Metabolism, 1987, 7, 752-758.	4.3	255