Yifan Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4350543/publications.pdf

Version: 2024-02-01

24 papers

3,254 citations

430874 18 h-index 9-index

24 all docs

24 docs citations

times ranked

24

6416 citing authors

#	Article	IF	CITATIONS
1	Manipulating Copper Dispersion on Ceria for Enhanced Catalysis: A Nanocrystalâ€Based Atomâ€Trapping Strategy. Advanced Science, 2022, 9, e2104749.	11.2	16
2	Controlling the elasticity of polyacrylonitrile fibers <i>via</i> ionic liquids containing cyano-based anions. RSC Advances, 2022, 12, 8656-8660.	3.6	2
3	Defect Engineering of Ceria Nanocrystals for Enhanced Catalysis via a High-Entropy Oxide Strategy. ACS Central Science, 2022, 8, 1081-1090.	11.3	25
4	Colloidal Nanostructures of Transition-Metal Dichalcogenides. Accounts of Chemical Research, 2021, 54, 1517-1527.	15.6	29
5	High-entropy materials for catalysis: A new frontier. Science Advances, 2021, 7, .	10.3	294
6	Mechanistic Insights of Pore Contributions in Carbon Supercapacitors by Modified Step Potential Electrochemical Spectroscopy. Journal of the Electrochemical Society, 2021, 168, 060530.	2.9	4
7	High-entropy catalysts: Supremacy of diversity. Chem Catalysis, 2021, 1, 490-492.	6.1	4
8	Self-regenerative noble metal catalysts supported on high-entropy oxides. Chemical Communications, 2020, 56, 15056-15059.	4.1	34
9	Insights into the Enhanced Cycle and Rate Performances of the Fâ€Substituted P2â€Type Oxide Cathodes for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000135.	19.5	57
10	Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nature Chemistry, 2020, 12, 284-293.	13.6	73
11	Topotactic Synthesis of Phosphabenzeneâ€Functionalized Porous Organic Polymers: Efficient Ligands in CO ₂ Conversion. Angewandte Chemie - International Edition, 2019, 58, 13763-13767.	13.8	32
12	From Highly Purified Boron Nitride to Boron Nitrideâ€Based Heterostructures: An Inorganic Precursorâ€Based Strategy. Advanced Functional Materials, 2019, 29, 1906284.	14.9	22
13	Defect-mediated selective hydrogenation of nitroarenes on nanostructured WS ₂ . Chemical Science, 2019, 10, 10310-10317.	7.4	30
14	Solution-Synthesized In4SnSe4 Semiconductor Microwires with a Direct Band Gap. Chemistry of Materials, 2017, 29, 1095-1098.	6.7	12
15	Solution synthesis of few-layer WTe ₂ and Mo _x W _{1â°x} Te ₂ nanostructures. Journal of Materials Chemistry C, 2017, 5, 11317-11323.	5 . 5	23
16	Low-Temperature Solution Synthesis of Transition Metal Dichalcogenide Alloys with Tunable Optical Properties. Journal of the American Chemical Society, 2017, 139, 11096-11105.	13.7	68
17	Lowâ€Temperature Solution Synthesis of Fewâ€Layer 1T ′â€MoTe ₂ Nanostructures Exhibiting Lattice Compression. Angewandte Chemie - International Edition, 2016, 55, 2830-2834.	g 13.8	84
18	2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Materials, 2016, 3, 042001.	4.4	408

#	Article	IF	CITATION
19	Controlled Exfoliation of MoS ₂ Crystals into Trilayer Nanosheets. Journal of the American Chemical Society, 2016, 138, 5143-5149.	13.7	207
20	Lowâ€Temperature Solution Synthesis of Fewâ€Layer 1T ′â€MoTe 2 Nanostructures Exhibiting Lattice Compression. Angewandte Chemie, 2016, 128, 2880-2884.	2.0	22
21	Fast and Efficient Preparation of Exfoliated 2H MoS ₂ Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. Nano Letters, 2015, 15, 5956-5960.	9.1	603
22	Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Accounts of Chemical Research, 2015, 48, 56-64.	15.6	1,089
23	Lysine-assisted hydrothermal synthesis of hierarchically porous Fe2O3 microspheres as anode materials for lithium-ion batteries. Journal of Power Sources, 2013, 222, 59-65.	7.8	88
24	Hierarchical hollow Fe2O3 micro-flowers composed of porous nanosheets as high performance anodes for lithium-ion batteries. RSC Advances, 2013, 3, 20639.	3.6	28