Miguel A Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4350442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An updated phylogenetic bioregionalization for the European fern flora. Biodiversity and Conservation, 2021, 30, 201-215.	2.6	2
2	Maximum levels of global phylogenetic diversity efficiently capture plant services for humankind. Nature Ecology and Evolution, 2021, 5, 583-588.	7.8	50
3	Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity. Scientific Reports, 2021, 11, 8926.	3.3	16
4	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	5.3	29
5	A global database of plant services for humankind. PLoS ONE, 2021, 16, e0253069.	2.5	11
6	Iberian Protected Areas Capture Regional Functional, Phylogenetic and Taxonomic Diversity of Most Tetrapod Groups. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4
7	Atlas of the vascular flora of the Iberian Peninsula biodiversity hotspot (AFLIBER). Global Ecology and Biogeography, 2021, 30, 1951-1957.	5.8	6
8	Historical contingency, niche conservatism and the tendency for some taxa to be more diverse towards the poles. Journal of Biogeography, 2020, 47, 783-794.	3.0	11
9	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	12.6	248
10	Pleistocene climate change and the formation of regional species pools. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190291.	2.6	20
11	Assessing amongâ€lineage variability in phylogenetic imputation of functional trait datasets. Ecography, 2018, 41, 1740-1749.	4.5	26
12	Climate and amphibian body size: a new perspective gained from the fossil record. Ecography, 2018, 41, 1307-1318.	4.5	11
13	Evolutionary history predicts the response of tree species to forest loss: A case study in peninsular Spain. PLoS ONE, 2018, 13, e0204365.	2.5	3
14	Phylogeny and the prediction of tree functional diversity across novel continental settings. Global Ecology and Biogeography, 2017, 26, 553-562.	5.8	31
15	Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information?. BMC Evolutionary Biology, 2017, 17, 53.	3.2	105
16	Structural bias in aggregated speciesâ€level variables driven by repeated species coâ€occurrences: a pervasive problem in community and assemblage data. Journal of Biogeography, 2017, 44, 1199-1211.	3.0	45
17	Geography and major host evolutionary transitions shape the resource use of plant parasites. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9840-9845.	7.1	61
18	Glaciations, deciduous forests, water availability and current geographical patterns in the diversity of European <i>Carabus</i> species. Journal of Biogeography, 2016, 43, 2343-2353.	3.0	40

#	Article	IF	CITATIONS
19	Constancy in Functional Space across a Species Richness Anomaly. American Naturalist, 2016, 187, E83-E92.	2.1	19
20	Estudio, gestión, conservación y restauración de ecosistemas ante el cambio global: 1º Jornadas FORECO en la Universidad de Alcalá. Ecosistemas, 2016, 25, 115.	0.4	0
21	Detecting Fragmentation Extinction Thresholds for Forest Understory Plant Species in Peninsular Spain. PLoS ONE, 2015, 10, e0126424.	2.5	10
22	Revealing patterns of local species richness along environmental gradients with a novel network tool. Scientific Reports, 2015, 5, 11561.	3.3	10
23	Body Size, Extinction Risk and Knowledge Bias in New World Snakes. PLoS ONE, 2014, 9, e113429.	2.5	17
24	Identifying global zoogeographical regions: lessons from <scp>W</scp> allace. Journal of Biogeography, 2013, 40, 2215-2225.	3.0	84
25	Range size patterns of New World oscine passerines (Aves): insights from differences among migratory and sedentary clades. Journal of Biogeography, 2013, 40, 2261-2273.	3.0	13
26	Does fragmentation increase extinction thresholds? A <scp>E</scp> uropeanâ€wide test with seven forest birds. Global Ecology and Biogeography, 2013, 22, 1282-1292.	5.8	31
27	The Imprint of Cenozoic Migrations and Evolutionary History on the Biogeographic Gradient of Body Size in New World Mammals. American Naturalist, 2012, 180, 246-256.	2.1	34
28	On the selection of phylogenetic eigenvectors for ecological analyses. Ecography, 2012, 35, 239-249.	4.5	107
29	Species distribution modelling as a macroecological tool: a case study using New World amphibians. Ecography, 2012, 35, 539-548.	4.5	45
30	Deep phylogeny, net primary productivity, and global body size gradient in birds. Biological Journal of the Linnean Society, 2012, 106, 880-892.	1.6	27
31	Integrating phylogeny, environment and space to explore variation in macroecological traits of Viperidae and Elapidae (Squamata: Serpentes). Journal of Zoological Systematics and Evolutionary Research, 2012, 50, 202-209.	1.4	4
32	Environmental determinants of woody and herb plant species richness patterns in Great Britain. Ecoscience, 2011, 18, 394-401.	1.4	11
33	Assessing the influence of environmental and human factors on native and exotic species richness. Acta Oecologica, 2011, 37, 51-57.	1.1	14
34	Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 2011, 14, 741-748.	6.4	183
35	Niche conservatism and species richness patterns of squamate reptiles in eastern and southern Africa. Austral Ecology, 2011, 36, 550-558.	1.5	14
36	Global angiosperm family richness revisited: linking ecology and evolution to climate. Journal of Biogeography, 2011, 38, 1253-1266.	3.0	116

#	Article	IF	CITATIONS
37	Climatic niche conservatism and the evolutionary dynamics in species range boundaries: global congruence across mammals and amphibians. Journal of Biogeography, 2011, 38, 2237-2247.	3.0	75
38	Relationships of climate, residence time, and biogeographical origin with the range sizes and species richness patterns of exotic plants in Great Britain. Plant Ecology, 2011, 212, 1901-1911.	1.6	15
39	Biogeographic Distribution Patterns of South American Amphibians: A Regionalization Based on Cluster Analysis. Natureza A Conservacao, 2011, 9, 67-72.	2.5	11
40	Predicted impact of climate change on threatened terrestrial vertebrates in central Spain highlights differences between endotherms and ectotherms. Animal Conservation, 2010, 13, 363-373.	2.9	42
41	Discerning the impact of humanâ€mediated factors on biodiversity using bioclimatic envelope models and partial regression techniques. Diversity and Distributions, 2010, 16, 300-309.	4.1	4
42	Species' response patterns to habitat fragmentation: do trees support the extinction threshold hypothesis?. Oikos, 2010, 119, 1335-1343.	2.7	21
43	Crossâ€species and assemblageâ€based approaches to Bergmann's rule and the biogeography of body size in <i>Plethodon</i> salamanders of eastern North America. Ecography, 2010, 33, 362-368.	4.5	45
44	Towards a biogeographic regionalization of the European biota. Journal of Biogeography, 2010, 37, 2067-2076.	3.0	75
45	Measuring evolutionary responses to global warming: cautionary lessons from <i>Drosophila</i> . Insect Conservation and Diversity, 2010, 3, 44-50.	3.0	14
46	The contribution of contemporary climate to ectothermic and endothermic vertebrate distributions in a glacial refuge. Global Ecology and Biogeography, 2010, 19, 40-49.	5.8	63
47	Prioritizing areas for conservation and vegetation restoration in post-agricultural landscapes: A Biosphere Reserve plan for Bioko, Equatorial Guinea. Biological Conservation, 2010, 143, 787-794.	4.1	26
48	Effects of seasonal grazing and precipitation regime on the soil macroinvertebrates of a Mediterranean old-field. European Journal of Soil Biology, 2010, 46, 91-96.	3.2	26
49	Habitat productivity influences root mass vertical distribution in grazed Mediterranean ecosystems. Acta Oecologica, 2010, 36, 377-382.	1.1	10
50	Human access and landscape structure effects on Andean forest bird richness. Acta Oecologica, 2010, 36, 396-402.	1.1	19
51	Deriving Species Richness, Endemism, and Threatened Species Patterns from Incomplete Distribution Data in the Bioko Island, Equatorial Guinea. Natureza A Conservacao, 2010, 08, 27-33.	2.5	7
52	Global richness patterns of venomous snakes reveal contrasting influences of ecology and history in two different clades. Oecologia, 2009, 159, 617-626.	2.0	27
53	Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. Journal of Biogeography, 2009, 36, 2222-2236.	3.0	69
54	Geographic body size gradients in tropical regions: water deficit and anuran body size in the Brazilian Cerrado. Ecography, 2009, 32, 581-590.	4.5	74

#	Article	IF	CITATIONS
55	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	4.5	231
56	Richness patterns, species distributions and the principle of extreme deconstruction. Global Ecology and Biogeography, 2009, 18, 123-136.	5.8	49
57	Global conservation strategies for two clades of snakes: combining taxonâ€specific goals with general prioritization schemes. Diversity and Distributions, 2009, 15, 841-851.	4.1	8
58	What Do Range Maps and Surveys Tell Us About Diversity Patterns?. Folia Geobotanica, 2008, 43, 345-355.	0.9	45
59	Bergmann's rule and the geography of mammal body size in the Western Hemisphere. Global Ecology and Biogeography, 2008, 17, 274-283.	5.8	133
60	Illegal logging, landscape structure and the variation of tree species richness across North Andean forest remnants. Forest Ecology and Management, 2008, 255, 1892-1899.	3.2	27
61	Dispersal potentials determine responses of woody plant species richness to environmental factors in fragmented Mediterranean landscapes. Forest Ecology and Management, 2008, 255, 2894-2906.	3.2	23
62	Animal Versus Wind Dispersal and the Robustness of Tree Species to Deforestation. Science, 2008, 320, 1502-1504.	12.6	125
63	Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora. Ecography, 2007, 30, 598-608.	4.5	72
64	GLOBAL MODELS FOR PREDICTING WOODY PLANT RICHNESS FROM CLIMATE: COMMENT. Ecology, 2007, 88, 255-259.	3.2	17
65	METABOLIC THEORY AND DIVERSITY GRADIENTS: WHERE DO WE GO FROM HERE?. Ecology, 2007, 88, 1898-1902.	3.2	47
66	A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS. Ecology, 2007, 88, 1877-1888.	3.2	139
67	Contemporary richness of holarctic trees and the historical pattern of glacial retreat. Ecography, 2007, 30, 173-182.	4.5	89
68	Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora. Ecography, 2007, 30, 598-608.	4.5	14
69	Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann's rule, urodeles its converse. Global Ecology and Biogeography, 2007, 16, 606-617.	5.8	189
70	The geographic distribution of mammal body size in Europe. Global Ecology and Biogeography, 2006, 15, 173-181.	5.8	100
71	Broad-scale patterns of body size in squamate reptiles of Europe and North America. Journal of Biogeography, 2006, 33, 781-793.	3.0	174
72	Energy, water and large-scale patterns of reptile and amphibian species richness in Europe. Acta Oecologica, 2005, 28, 65-70.	1.1	152

#	Article	IF	CITATIONS
73	Food web complexity and higher-level ecosystem services. Ecology Letters, 2003, 6, 587-593.	6.4	100
74	Habitat patchiness and plant species richness. Ecology Letters, 2001, 4, 417-420.	6.4	59
75	Self-disturbance as a Source of Spatiotemporal Heterogeneity: the Case of the Tallgrass Prairie. Journal of Theoretical Biology, 2000, 204, 153-164.	1.7	22
76	Diversity, function and stability in parasitoid communities. Ecology Letters, 2000, 3, 35-40.	6.4	77
77	Rapid micro-evolution and loss of chromosomal diversity in Drosophila in response to climate warming. Evolutionary Ecology, 1998, 12, 829-838.	1.2	157
78	Resource partitioning of four sympatric bark beetles depending on swarming dates and tree species. Forest Ecology and Management, 1998, 109, 127-135.	3.2	43
79	Plant competition and slug herbivory: Effects on the yield and biomass allocation pattern of Poa annua L. Acta Oecologica, 1998, 19, 37-46.	1.1	31
80	Species and life-forms composition of Mediterranean mountain pastures in two years of contrasting precipitation. Flora: Morphology, Distribution, Functional Ecology of Plants, 1997, 192, 231-240.	1.2	3
81	Determination of Animal Behavior-Environment Relationships by Correspondence Analysis. Journal of Range Management, 1997, 50, 85.	0.3	18
82	Vertical distribution of below-ground biomass in intensively grazed mesic grasslands. Journal of Vegetation Science, 1996, 7, 137-142.	2.2	3
83	The vertical distribution of below-ground biomass in grassland communities in relation to grazing regime and habitat characteristics. Journal of Vegetation Science, 1995, 6, 63-72.	2.2	19
84	Stability May Decrease with Diversity in Grassland Communities: Empirical Evidence from the 1986 Cantabrian Mountains (Spain) Drought. Oikos, 1994, 71, 177.	2.7	26
85	Ecological and evolutionary components of body size: geographic variation of venomous snakes at the global scale. Biological Journal of the Linnean Society, 0, 98, 94-109.	1.6	51