Samuel J Landry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4350322/publications.pdf Version: 2024-02-01

SAMILEL LLANDRY

#	Article	IF	CITATIONS
1	The crystal structure of the GroES co-chaperonin at 2.8 Ã resolution. Nature, 1996, 379, 37-45.	27.8	452
2	Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature, 1992, 355, 455-457.	27.8	315
3	Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6108-6113.	7.1	273
4	Characterization of a functionally important mobile domain of GroES. Nature, 1993, 364, 255-258.	27.8	234
5	The major peanut allergen, Ara h 2, functions as a trypsin inhibitor, and roasting enhances this function. Journal of Allergy and Clinical Immunology, 2003, 112, 190-195.	2.9	197
6	The chaperonin GroEL binds a polypeptide in an .alphahelical conformation. Biochemistry, 1991, 30, 7359-7362.	2.5	186
7	The ins and outs of a molecular chaperone machine. Trends in Biochemical Sciences, 1998, 23, 138-143.	7.5	108
8	The J-Domain of Hsp40 Couples ATP Hydrolysis to Substrate Capture in Hsp70â€. Biochemistry, 2003, 42, 4937-4944.	2.5	105
9	Renaturation of citrate synthase: Influence of denaturant and folding assistants. Protein Science, 1992, 1, 522-529.	7.6	98
10	Peptides Identified through Phage Display Direct Immunogenic Antigen to Dendritic Cells. Journal of Immunology, 2004, 172, 7425-7431.	0.8	92
11	Polypeptide Interactions with Molecular Chaperones and their Relationship to in Vivo Protein Folding. Annual Review of Biophysics and Biomolecular Structure, 1994, 23, 645-669.	18.3	85
12	Recognition of nascent polypeptides for targeting and folding. Trends in Biochemical Sciences, 1991, 16, 159-163.	7.5	81
13	Interplay of structure and disorder in cochaperonin mobile loops Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11622-11627.	7.1	74
14	Proposed procedure for using electrostatic potentials to predict and interpret nucleophilic processes. The Journal of Physical Chemistry, 1982, 86, 4767-4771.	2.9	72
15	Chaperone power in a virus?. Trends in Biochemical Sciences, 1994, 19, 277-278.	7.5	68
16	Basis of Substrate Binding by the Chaperonin GroELâ€. Biochemistry, 1999, 38, 12537-12546.	2.5	66
17	The Importance of a Mobile Loop in Regulating Chaperonin/ Co-chaperonin Interaction. Journal of Biological Chemistry, 2001, 276, 4981-4987.	3.4	61
18	Antigen three-dimensional structure guides the processing and presentation of helper T-cell epitopes. Molecular Immunology, 2007, 44, 1159-1168.	2.2	54

SAMUEL J LANDRY

#	Article	IF	CITATIONS
19	Structure and Energetics of an Allele-Specific Genetic Interaction betweendnaJanddnaK:Â Correlation of Nuclear Magnetic Resonance Chemical Shift Perturbations in the J-Domain of Hsp40/DnaJ with Binding Affinity for the ATPase Domain of Hsp70/DnaKâ€. Biochemistry, 2003, 42, 4926-4936.	2.5	53
20	Allocation of Helper T-cell Epitope Immunodominance According to Three-dimensional Structure in the Human Immunodeficiency Virus Type I Envelope Glycoprotein gp120. Journal of Biological Chemistry, 2001, 276, 41913-41920.	3.4	51
21	Local protein instability predictive of helper T-cell epitopes. Trends in Immunology, 1997, 18, 527-532.	7.5	50
22	Reversible denaturation of oligomeric human chaperonin 10: Denatured state depends on chemical denaturant. Protein Science, 2000, 9, 2109-2117.	7.6	44
23	Proximal Clycans Outside of the Epitopes Regulate the Presentation of HIV-1 Envelope gp120 Helper Epitopes. Journal of Immunology, 2009, 182, 6369-6378.	0.8	42
24	Temperature Dependence of Backbone Dynamics in Loops of Human Mitochondrial Heat Shock Protein 10â€. Biochemistry, 1997, 36, 10975-10986.	2.5	38
25	Compensatory Changes in GroEL/Gp31 Affinity as a Mechanism for Allele-specific Genetic Interaction. Journal of Biological Chemistry, 1999, 274, 52-58.	3.4	37
26	Structural Basis for Helper T-cell and Antibody Epitope Immunodominance in Bacteriophage T4 Hsp10. Journal of Biological Chemistry, 2002, 277, 161-168.	3.4	37
27	The Disordered Mobile Loop of GroES Folds into a Defined β-Hairpin upon Binding GroEL. Journal of Biological Chemistry, 2001, 276, 31257-31264.	3.4	33
28	Proteolytic Sensitivity and Helper T-cell Epitope Immunodominance Associated with the Mobile Loop in Hsp10s. Journal of Biological Chemistry, 2002, 277, 155-160.	3.4	30
29	Tc1 effector diversity shows dissociated expression of granzyme B and interferon-γ in HIV infection. Aids, 2004, 18, 383-392.	2.2	29
30	Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin. Journal of Experimental Medicine, 2020, 217, .	8.5	28
31	Antigen structure influences helper Tâ€cell epitope dominance in the human immune response to HIV envelope glycoprotein gp120. European Journal of Immunology, 2008, 38, 1231-1237.	2.9	27
32	Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment. Nature Communications, 2016, 7, 11804.	12.8	26
33	CD4+ T-cell epitope prediction using antigen processing constraints. Journal of Immunological Methods, 2016, 432, 72-81.	1.4	25
34	Helper T-cell Epitope Immunodominance Associated with Structurally Stable Segments of Hen Egg Lysozyme and HIV gp120. Journal of Theoretical Biology, 2000, 203, 189-201.	1.7	24
35	Three-Dimensional Structure Determines the Pattern of CD4 ⁺ T-Cell Epitope Dominance in Influenza Virus Hemagglutinin. Journal of Virology, 2008, 82, 1238-1248.	3.4	23
36	A History of Molecular Chaperone Structures in the Protein Data Bank. International Journal of Molecular Sciences, 2019, 20, 6195.	4.1	22

SAMUEL J LANDRY

#	Article	IF	CITATIONS
37	Probing the interface in a human co-chaperonin heptamer: residues disrupting oligomeric unfolded state identified. BMC Biochemistry, 2003, 4, 14.	4.4	20
38	Influence of Disulfide-Stabilized Structure on the Specificity of Helper T-Cell and Antibody Responses to HIV Envelope Glycoprotein gp120. Journal of Virology, 2010, 84, 3303-3311.	3.4	19
39	A mobile loop order-disorder transition modulates the speed of chaperonin cycling. Protein Science, 2004, 13, 2139-2148.	7.6	18
40	The prediction and characterization of YshA, an unknown outer-membrane protein from Salmonella typhimurium. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 287-297.	2.6	18
41	The Hsp40 Jâ€domain modulates Hsp70 conformation and ATPase activity with a semiâ€elliptical spring. Protein Science, 2017, 26, 1838-1851.	7.6	18
42	Deimmunizing substitutions in Pseudomonas exotoxin domain III perturb antigen processing without eliminating T-cell epitopes. Journal of Biological Chemistry, 2019, 294, 4667-4681.	3.4	18
43	The Hsp40 J-domain Stimulates Hsp70 When Tethered by the Client to the ATPase Domain. Journal of Biological Chemistry, 2010, 285, 21679-21688.	3.4	16
44	Swivels and Stators in the Hsp40-Hsp70 Chaperone Machine. Structure, 2003, 11, 1465-1466.	3.3	13
45	Conformational instability governed by disulfide bonds partitions the dominant from subdominant helper T-cell responses specific for HIV-1 envelope glycoprotein gp120. Vaccine, 2015, 33, 2887-2896.	3.8	12
46	Structural Basis for CD4+ T Cell Epitope Dominance in Arbo-Flavivirus Envelope Proteins: A Meta-Analysis. Viral Immunology, 2017, 30, 479-489.	1.3	10
47	Three dimensional structure directs T-cell epitope dominance associated with allergy. Clinical and Molecular Allergy, 2008, 6, 9.	1.8	8
48	CD4+ T-Cell Epitope Prediction by Combined Analysis of Antigen Conformational Flexibility and Peptide-MHCII Binding Affinity. Biochemistry, 2022, 61, 1585-1599.	2.5	8
49	Comprehensive Analysis of Contributions from Protein Conformational Stability and Major Histocompatibility Complex Class II-Peptide Binding Affinity to CD4+ Epitope Immunogenicity in HIV-1 Envelope Glycoprotein. Journal of Virology, 2014, 88, 9605-9615.	3.4	7
50	Shaping T Cell – B Cell Collaboration in the Response to Human Immunodeficiency Virus Type 1 Envelope Glycoprotein gp120 by Peptide Priming. PLoS ONE, 2013, 8, e65748.	2.5	6
51	Preparation of Recombinant Human Hsp10. , 2000, 140, 145-151.		5
52	Induction of stress proteins in anoxic and hyperthermicSpodoptera frugiperda cells. Cytotechnology, 1995, 17, 91-101.	1.6	4
53	Identification of Amino Acid Residues at Nucleotide-Binding Sites of Chaperonin GroEL/GroES and cpn10 by Photoaffinity Labeling with 2-azido-adenosine 5'-triphosphate. FEBS Journal, 1997, 244, 627-634.	0.2	4
54	The Serpin-like Loop Insertion of Ovalbumin Increases the Stability and Decreases the OVA 323–339 Epitope Processing Efficiency. Biochemistry, 2021, 60, 1578-1586.	2.5	4

SAMUEL J LANDRY

#	Article	IF	CITATIONS
55	Domain-specific spectroscopy of 5-hydroxytryptophan-containing variants of Escherichia coli DnaJ. BBA - Proteins and Proteomics, 2000, 1480, 267-277.	2.1	3
56	Assay of Chaperonin-Assisted Refolding of Citrate Synthase. , 2000, 140, 133-138.		3
57	Biophysical studies of recognition sequences for targeting and folding. Antonie Van Leeuwenhoek, 1992, 61, 93-99.	1.7	1
58	Nuclear Magnetic Resonance Studies of Peptides Bound to Chaperones. Methods, 1993, 5, 233-241.	3.8	1
59	The Relationship of T-Cell Epitopes and Allergen Structure. , 0, , 123-159.		1
60	Abstract 1922: Protective tumor neo-epitopes are processed from conformationally stable neo-antigen segments. , 2021, , .		0
61	Protein Disassembly by Hsp40-Hsp70. , 2007, , 228-254.		0