
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4349474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Virtual Alternating Current Measurements Advance Semiconductor Gas Sensors' Performance in the Internet of Things. IEEE Internet of Things Journal, 2022, 9, 5502-5510.	8.7	10
2	Reversing fatigue in carbon-fiber reinforced vitrimer composites. Carbon, 2022, 187, 108-114.	10.3	20
3	Oxygen Reduction Reaction with Manganese Oxide Nanospheres in Microbial Fuel Cells. ACS Omega, 2022, 7, 11777-11787.	3.5	7
4	Nanostructuring versus microstructuring in battery electrodes. Nature Reviews Materials, 2022, 7, 736-746.	48.7	92
5	Controlled Re doping in MoS2 by chemical vapor deposition. Inorganic Chemistry Communication, 2021, 123, 108329.	3.9	6
6	Examining the electron transport in chalcogenide perovskite BaZrS ₃ . Journal of Materials Chemistry C, 2021, 9, 3892-3900.	5.5	24
7	ESSENCE – A rapid, shear-enhanced, flow-through, capacitive electrochemical platform for rapid detection of biomolecules. Biosensors and Bioelectronics, 2021, 182, 113163.	10.1	14
8	Orientation-Controlled Large-Area Epitaxial PbI2 Thin Films with Tunable Optical Properties. ACS Applied Materials & Interfaces, 2021, 13, 32450-32460.	8.0	6
9	Bandgap Tuning in BaZrS ₃ Perovskite Thin Films. ACS Applied Electronic Materials, 2021, 3, 3306-3312.	4.3	31
10	Phase transformation and enhanced blue photoluminescence of zirconium oxide poly-crystalline thin film induced by Ni ion beam irradiation. Scientific Reports, 2021, 11, 17672.	3.3	6
11	Alloying of Alkali Metals with Tellurene. Advanced Energy Materials, 2021, 11, 2003248.	19.5	11
12	Corrosion Resistance of Sulfur–Selenium Alloy Coatings. Advanced Materials, 2021, 33, e2104467.	21.0	21
13	Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. Carbon, 2020, 159, 586-597.	10.3	44
14	Short period sinusoidal thermal modulation for quantitative identification of gas species. Nanoscale, 2020, 12, 220-229.	5.6	30
15	Aqueous lithium-ion batteries with niobium tungsten oxide anodes for superior volumetric and rate capability. Energy Storage Materials, 2020, 27, 506-513.	18.0	40
16	Heterogeneity-induced mesoscale toughening in polymer nanocomposites. Materialia, 2020, 11, 100673.	2.7	6
17	Sensible graphene oxide differentiates macrophages and <i>Leishmania</i> : a bio-nano interplay in attenuating intracellular parasite. RSC Advances, 2020, 10, 27502-27511.	3.6	7
18	Improvement in fatigue life of carbon fibre reinforced polymer composites via a Nano-Silica Modified Matrix. Carbon, 2020, 170, 220-224.	10.3	33

#	Article	IF	CITATIONS
19	A dual-ion accepting vanadium carbide nanowire cathode integrated with carbon cloths for high cycling stability. Nanoscale, 2020, 12, 20868-20874.	5.6	10
20	Local ferroelectric polarization in antiferroelectric chalcogenide perovskite BaZrS3 thin films. Physical Review B, 2020, 102, .	3.2	13
21	Multifunctional Bioâ€Nanocomposite Coatings for Perishable Fruits. Advanced Materials, 2020, 32, e1908291.	21.0	97
22	Substitutional transition metal doping in MoS ₂ : a first-principles study. Nano Express, 2020, 1, 010008.	2.4	20
23	Bioâ€Nanocomposite Coatings: Multifunctional Bioâ€Nanocomposite Coatings for Perishable Fruits (Adv.) Tj ETÇ	2q110.78	43314 rgBT /(
24	Recent advances in the mitigation of dendrites in lithium-metal batteries. Journal of Applied Physics, 2020, 128, .	2.5	14
25	In situ healing of dendrites in a potassium metal battery. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5588-5594.	7.1	79
26	Flame Synthesis of Superhydrophilic Carbon Nanotubes/Ni Foam Decorated with Fe ₂ O ₃ Nanoparticles for Water Purification via Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 13229-13238.	8.0	92
27	Carbon science perspective in 2020: Current research and future challenges. Carbon, 2020, 161, 373-391.	10.3	77
28	Efficient Polysulfide Redox Enabled by Lattice-Distorted Ni ₃ Fe Intermetallic Electrocatalyst-Modified Separator for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 19572-19580.	8.0	72
29	Sculpting Artificial Edges in Monolayer MoS ₂ for Controlled Formation of Surface-Enhanced Raman Hotspots. ACS Nano, 2020, 14, 6258-6268.	14.6	45
30	An Environmentally Stable and Leadâ€Free Chalcogenide Perovskite. Advanced Functional Materials, 2020, 30, 2001387.	14.9	52
31	Reversible Alloying of Phosphorene with Potassium and Its Stabilization Using Reduced Graphene Oxide Buffer Layers. ACS Nano, 2019, 13, 14094-14106.	14.6	36
32	Graphene's Partial Transparency to van der Waals and Electrostatic Interactions. Langmuir, 2019, 35, 12306-12316.	3.5	13
33	Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. Journal of Colloid and Interface Science, 2019, 542, 54-62.	9.4	248
34	Quantifying a scientist's intellectual leadership. Carbon, 2019, 150, 485-488.	10.3	1
35	Structural transformation and embrittlement during lithiation and delithiation cycles in an amorphous silicon electrode. Acta Materialia, 2019, 175, 11-20.	7.9	22
36	Catalystâ€Free and Morphology ontrolled Growth of 2D Perovskite Nanowires for Polarized Light Detection. Advanced Optical Materials, 2019, 7, 1900039.	7.3	35

#	Article	IF	CITATIONS
37	Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries. Nature Communications, 2019, 10, 1764.	12.8	73
38	Exploiting self-heat in a lithium metal battery for dendrite healing. Energy Storage Materials, 2019, 20, 291-298.	18.0	50
39	Tellurene based chemical sensor. Journal of Materials Chemistry A, 2019, 7, 26326-26333.	10.3	95
40	Multifunctional and Waterâ€Resistant MXeneâ€Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Advanced Functional Materials, 2019, 29, 1806819.	14.9	584
41	Highly sulfiphilic Ni-Fe bimetallic oxide nanoparticles anchored on carbon nanotubes enable effective immobilization and conversion of polysulfides for stable lithium-sulfur batteries. Carbon, 2019, 142, 32-39.	10.3	78
42	A carbon science perspective in 2018: Current achievements and future challenges. Carbon, 2018, 132, 785-801.	10.3	80
43	Recent advances in phosphorene as a sensing material. Nano Today, 2018, 20, 13-32.	11.9	134
44	Porous Graphene Films with Unprecedented Elastomeric Scaffoldâ€Like Folding Behavior for Foldable Energy Storage Devices. Advanced Materials, 2018, 30, e1707025.	21.0	102
45	Utilizing van der Waals Slippery Interfaces to Enhance the Electrochemical Stability of Silicon Film Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 13442-13451.	8.0	48
46	Hexagonal Boron Nitride: The Thinnest Insulating Barrier to Microbial Corrosion. ACS Nano, 2018, 12, 2242-2252.	14.6	71
47	Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study. ACS Applied Materials & amp; Interfaces, 2018, 10, 5373-5384.	8.0	92
48	Effects of adatom and gas molecule adsorption on the physical properties of tellurene: a first principles investigation. Physical Chemistry Chemical Physics, 2018, 20, 4058-4066.	2.8	87
49	Self-heating–induced healing of lithium dendrites. Science, 2018, 359, 1513-1516.	12.6	378
50	Utilizing a graphene matrix to overcome the intrinsic limitations of red phosphorus as an anode material in lithium-ion batteries. Carbon, 2018, 127, 588-595.	10.3	50
51	Repurposing paper by-product lignosulfonate as a sulfur donor/acceptor for high performance lithium–sulfur batteries. Sustainable Energy and Fuels, 2018, 2, 422-429.	4.9	26
52	Thermally Conductive Phase Change Composites Featuring Anisotropic Graphene Aerogels for Realâ€īime and Fastâ€Charging Solarâ€īhermal Energy Conversion. Advanced Functional Materials, 2018, 28, 1805365.	14.9	260
53	Theoretical and Experimental Insight into the Mechanism for Spontaneous Vertical Growth of ReS 2 Nanosheets. Advanced Functional Materials, 2018, 28, 1801286.	14.9	35
54	Analysis of Deposition Methods for Lithium-Ion Battery Anodes Using Reduced Graphene Oxide Slurries on Copper Foil. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	2.2	2

#	Article	IF	CITATIONS
55	Highly Bendable Ionic Soft Actuator Based on Nitrogenâ€Enriched 3D Heteroâ€Nanostructure Electrode. Advanced Functional Materials, 2018, 28, 1802464.	14.9	51
56	A flexible carbon/sulfur-cellulose core-shell structure for advanced lithium–sulfur batteries. Energy Storage Materials, 2018, 15, 388-395.	18.0	38
57	Ultrathin and Strong Electrospun Porous Fiber Separator. ACS Applied Energy Materials, 2018, 1, 4794-4803.	5.1	32
58	Screening-Level Life Cycle Assessment of Graphene-Poly(ether imide) Coatings Protecting Unalloyed Steel from Severe Atmospheric Corrosion. ACS Sustainable Chemistry and Engineering, 2017, 5, 2656-2667.	6.7	32
59	Protecting Silicon Film Anodes in Lithium-Ion Batteries Using an Atomically Thin Graphene Drape. ACS Nano, 2017, 11, 5051-5061.	14.6	113
60	Solid‣tate Hybrid Fibrous Supercapacitors Produced by Deadâ€End Tube Membrane Ultrafiltration. Advanced Functional Materials, 2017, 27, 1606461.	14.9	31
61	Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials. Nano Today, 2017, 14, 100-123.	11.9	69
62	Influence of releasing graphene oxide into a clayey sand: physical and mechanical properties. RSC Advances, 2017, 7, 18060-18067.	3.6	31
63	Sustainability of renewable fuel infrastructure: a screening LCA case study of anticorrosive graphene oxide epoxy liners in steel tanks for the storage of biodiesel and its blends. Environmental Sciences: Processes and Impacts, 2017, 19, 141-153.	3.5	9
64	Effects of Defects on the Temperatureâ€Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition. Advanced Functional Materials, 2017, 27, 1704357.	14.9	44
65	Phosphorene as a Polysulfide Immobilizer and Catalyst in Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1602734.	21.0	289
66	Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li S batteries. Carbon, 2016, 108, 120-126.	10.3	134
67	Fast Triggering of Shape Memory Polymers using an Embedded Carbon Nanotube Sponge Network. Scientific Reports, 2016, 6, 24148.	3.3	28
68	Vertically Oriented Arrays of ReS ₂ Nanosheets for Electrochemical Energy Storage and Electrocatalysis. Nano Letters, 2016, 16, 3780-3787.	9.1	241
69	Transitionâ€Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. Advanced Materials, 2016, 28, 9735-9743.	21.0	208
70	Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. Journal of Materials Chemistry A, 2016, 4, 18067-18074.	10.3	167
71	Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability. Nature Communications, 2016, 7, 13345.	12.8	36
72	Aging of Transition Metal Dichalcogenide Monolayers. ACS Nano, 2016, 10, 2628-2635.	14.6	359

#	Article	IF	CITATIONS
73	Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.	10.3	261
74	Nanocomposites of a Cashew Nut Shell Derived Epoxy Resin and Graphene Platelets: From Flexible to Tough. ACS Sustainable Chemistry and Engineering, 2016, 4, 1715-1721.	6.7	31
75	A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core–shell additives. Carbon, 2016, 101, 239-244.	10.3	128
76	Graphene Oxide: Controlled Crumpling of Graphene Oxide Films for Tunable Optical Transmittance (Adv. Mater. 21/2015). Advanced Materials, 2015, 27, 3222-3222.	21.0	1
77	Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion. Scientific Reports, 2015, 5, 13858.	3.3	50
78	Cl-Doped ZnO Nanowire Arrays on 3D Graphene Foam with Highly Efficient Field Emission and Photocatalytic Properties. Small, 2015, 11, 4785-4792.	10.0	71
79	Localized transformation of few-layered graphene producing graphitic shells with nanoparticle cores for catalytic applications. Carbon, 2015, 85, 406-413.	10.3	8
80	Defect-Induced Photoluminescence in Monolayer Semiconducting Transition Metal Dichalcogenides. ACS Nano, 2015, 9, 1520-1527.	14.6	376
81	Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon, 2015, 87, 292-298.	10.3	70
82	Scalable and rapid Far Infrared reduction of graphene oxide for high performance lithium ion batteries. Energy Storage Materials, 2015, 1, 9-16.	18.0	33
83	Effect of Platelet Thickness on Wear of Graphene–Polytetrafluoroethylene (PTFE) Composites. Tribology Letters, 2015, 59, 1.	2.6	45
84	Micromilling Responses of Hierarchical Graphene Composites. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2015, 137, .	2.2	8
85	Controlled Crumpling of Graphene Oxide Films for Tunable Optical Transmittance. Advanced Materials, 2015, 27, 3256-3265.	21.0	129
86	Wetting of Mono and Few-Layered WS ₂ and MoS ₂ Films Supported on Si/SiO ₂ Substrates. ACS Nano, 2015, 9, 3023-3031.	14.6	186
87	Organic–Inorganic Heterointerfaces for Ultrasensitive Detection of Ultraviolet Light. Nano Letters, 2015, 15, 3787-3792.	9.1	117
88	A Foldable Lithium–Sulfur Battery. ACS Nano, 2015, 9, 11342-11350.	14.6	125
89	Shape memory fiber supercapacitors. Nano Energy, 2015, 17, 330-338.	16.0	67
90	Graphene oxide colloidal suspensions mitigate carbon diffusion during diamond turning of steel. Journal of Manufacturing Processes, 2015, 17, 41-47.	5.9	16

#	Article	IF	CITATIONS
91	A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy, 2015, 11, 356-365.	16.0	526
92	High-strain rate compressive behavior of multi-walled carbon nanotube dispersed thermoset epoxy resin. Journal of Composite Materials, 2015, 49, 903-910.	2.4	18
93	Far-infrared reduced graphene oxide as high performance electrodes for supercapacitors. Carbon, 2014, 75, 201-208.	10.3	32
94	Wettingâ€Transparent Graphene Films for Hydrophobic Waterâ€Harvesting Surfaces. Advanced Materials, 2014, 26, 5166-5172.	21.0	97
95	Defect-induced plating of lithium metal within porous graphene networks. Nature Communications, 2014, 5, 3710.	12.8	381
96	Epoxy Nanocomposites with Two-Dimensional Transition Metal Dichalcogenide Additives. ACS Nano, 2014, 8, 5282-5289.	14.6	152
97	Largeâ€Area Freestanding Graphene Paper for Superior Thermal Management. Advanced Materials, 2014, 26, 4521-4526.	21.0	386
98	Effect of defects on the intrinsic strength and stiffness of graphene. Nature Communications, 2014, 5, 3186.	12.8	560
99	Graphene Films: Wettingâ€Transparent Graphene Films for Hydrophobic Waterâ€Harvesting Surfaces (Adv.) Tj E	TQ _q 1_1 0.7 21.0	784314 rgBT
100	Enhanced lithiation in defective graphene. Carbon, 2014, 80, 305-310.	10.3	186
101	Mechanical Property Enhancement of Layered Reduced Graphene Oxide Papers by Nonâ€Covalent Modification with Terephthalic Acid. Particle and Particle Systems Characterization, 2014, 31, 337-341.	2.3	10
102	Nanocarbon aerogel complexes inspired by the leaf structure. Carbon, 2014, 77, 637-644.	10.3	21
103	Carbon nanotube sponges as conductive networks for supercapacitor devices. Nano Energy, 2013, 2, 1025-1030.	16.0	61
104	NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell. Carbon, 2013, 56, 56-63.	10.3	56
105	Synthesis and electrochemical performance characterization of Ce-doped Li 3 V 2 (PO 4) 3 /C as cathode materials for lithium-ion batteries. Journal of Power Sources, 2013, 243, 33-39.	7.8	74
106	Graphene Foams: Superhydrophobic Graphene Foams (Small 1/2013). Small, 2013, 9, 2-2.	10.0	7
107	Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode. ACS Nano, 2013, 7, 4242-4251.	14.6	192
108	Passivation of microbial corrosion using a graphene coating. Carbon, 2013, 56, 45-49.	10.3	121

#	Article	IF	CITATIONS
109	Graphene Drape Minimizes the Pinning and Hysteresis of Water Drops on Nanotextured Rough Surfaces. ACS Nano, 2013, 7, 3512-3521.	14.6	46
110	Raman spectroscopic imaging of graphene dispersion in polymer composites. Carbon, 2013, 62, 510-513.	10.3	51
111	Electrical Transport and Breakdown in Graphene Multilayers Loaded with Electron Beam Induced Deposited Platinum. ACS Applied Materials & Interfaces, 2013, 5, 3424-3430.	8.0	6
112	Superhydrophobic Graphene Foams. Small, 2013, 9, 75-80.	10.0	183
113	Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2013, 135, .	2.2	28
114	Facet-insensitive graphene growth on copper. Physical Review B, 2012, 85, .	3.2	45
115	Nano-engineered Silicon Anodes for Lithium-Ion Rechargeable Batteries. Nanostructure Science and Technology, 2012, , 43-66.	0.1	0
116	Wetting transparency of graphene. Nature Materials, 2012, 11, 217-222.	27.5	971
117	Photothermally Reduced Graphene as High-Power Anodes for Lithium-Ion Batteries. ACS Nano, 2012, 6, 7867-7878.	14.6	320
118	Nano-engineered biocatalyst-electrode structures for next generation microbial fuel cells. Nano Energy, 2012, 1, 3-5.	16.0	34
119	High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Applied Physics Letters, 2012, 100, .	3.3	216
120	Nanostructured electrodes for high-power lithium ion batteries. Nano Energy, 2012, 1, 518-533.	16.0	306
121	Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells. Nanoscale, 2012, 4, 926-930.	5.6	116
122	Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets. , 2012, , .		2
123	Control of Epoxy Creep Using Graphene. Small, 2012, 8, 1676-1682.	10.0	73
124	Nanocomposite Creep: Control of Epoxy Creep Using Graphene (Small 11/2012). Small, 2012, 8, 1675-1675.	10.0	7
125	Graphene-Based Chemical Sensors. Journal of Physical Chemistry Letters, 2012, 3, 1746-1753.	4.6	516
126	Suppression of wear in graphene polymer composites. Carbon, 2012, 50, 3178-3183.	10.3	213

8

#	Article	IF	CITATIONS
127	In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites. Composites Science and Technology, 2012, 72, 284-289.	7.8	130
128	Raman study of interfacial load transfer in graphene nanocomposites. Applied Physics Letters, 2011, 98,	3.3	71
129	Functionally Strain-Graded Nanoscoops for High Power Li-Ion Battery Anodes. Nano Letters, 2011, 11, 377-384.	9.1	101
130	Enhanced Electrical Conductivity in Polystyrene Nanocomposites at Ultra-Low Graphene Content. ACS Applied Materials & Interfaces, 2011, 3, 3130-3133.	8.0	234
131	Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives. Journal of Physical Chemistry C, 2011, 115, 8753-8758.	3.1	377
132	Graphene Supported Platinum Nanoparticle Counter-Electrode for Enhanced Performance of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 3884-3889.	8.0	153
133	Toughening in Graphene Ceramic Composites. ACS Nano, 2011, 5, 3182-3190.	14.6	568
134	Harvesting Energy from Water Flow over Graphene. Nano Letters, 2011, 11, 3123-3127.	9.1	206
135	Graphene–aluminum nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7933-7937.	5.6	514
136	High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network. Scientific Reports, 2011, 1, 166.	3.3	503
137	Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading. Journal of Nanoparticle Research, 2011, 13, 733-737.	1.9	76
138	Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation. Advanced Functional Materials, 2011, 21, 4617-4623.	14.9	500
139	Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine. Carbon, 2011, 49, 1258-1265.	10.3	206
140	Depth sensing indentation of nanoscale graphene platelets in nanocomposite thin films. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	2
141	Superhydrophobic to Superhydrophilic Wetting Control in Graphene Films. Advanced Materials, 2010, 22, 2151-2154.	21.0	352
142	Tunable Bandgap in Graphene by the Controlled Adsorption of Water Molecules. Small, 2010, 6, 2535-2538.	10.0	279
143	Fracture and Fatigue in Graphene Nanocomposites. Small, 2010, 6, 179-183.	10.0	781
144	Directed rebounding of droplets by microscale surface roughness gradients. Applied Physics Letters, 2010, 96, .	3.3	78

NIKHIL A KORATKAR

#	Article	IF	CITATIONS
145	Graphene Nanoribbon Composites. ACS Nano, 2010, 4, 7415-7420.	14.6	264
146	Heterogeneity in Epoxy Nanocomposites Initiates Crazing: Significant Improvements in Fatigue Resistance and Toughening. Small, 2009, 5, 1403-1407.	10.0	100
147	Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries. Small, 2009, 5, 2236-2242.	10.0	377
148	Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano, 2009, 3, 3884-3890.	14.6	2,381
149	Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. Journal of Applied Physics, 2009, 105, .	2.5	147
150	Energy dissipation in carbon nanotube composites: a review. Journal of Materials Science, 2008, 43, 4370-4382.	3.7	129
151	Nanostructured Copper Interfaces for Enhanced Boiling. Small, 2008, 4, 1084-1088.	10.0	404
152	Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. Carbon, 2008, 46, 706-710.	10.3	170
153	First-principles study of interaction of molecular hydrogen with Li-doped carbon nanotube peapod structures. Physical Review B, 2008, 77, .	3.2	36
154	Polarity-Dependent Electrochemically Controlled Transport of Water through Carbon Nanotube Membranes. Nano Letters, 2007, 7, 697-702.	9.1	176
155	Wetting and Electrowetting Properties of Carbon Nanotube Templated Parylene Films. Journal of Physical Chemistry B, 2007, 111, 4296-4299.	2.6	36
156	Temperature-Activated Interfacial Friction Damping in Carbon Nanotube Polymer Composites. Nano Letters, 2006, 6, 219-223.	9.1	104
157	Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping. Journal of Materials Science, 2006, 41, 7824-7829.	3.7	88
158	Enhanced photoemission from nanostructured surface topologies. Applied Physics Letters, 2006, 89, 193116.	3.3	9
159	Water electrolysis activated by Ru nanorod array electrodes. Applied Physics Letters, 2006, 88, 263106.	3.3	42
160	Viscoelasticity in carbon nanotube composites. Nature Materials, 2005, 4, 134-137.	27.5	443
161	NANOSCALE FIELD IONIZATION SENSORS: A REVIEW. International Journal of Nanoscience, 2005, 04, 945-949.	0.7	1
162	Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites. Applied Physics Letters, 2005, 87, 063102.	3.3	119

#	Article	IF	CITATIONS
163	Temperature Effects on Resistance of Aligned Multiwalled Carbon Nanotube Films. Journal of Nanoscience and Nanotechnology, 2004, 4, 744-748.	0.9	39
164	Multifunctional structural reinforcement featuring carbon nanotube films. Composites Science and Technology, 2003, 63, 1525-1531.	7.8	109
165	Miniaturized gas ionization sensors using carbon nanotubes. Nature, 2003, 424, 171-174.	27.8	929
166	Wind Tunnel Testing of a Smart Rotor Model with Trailing-Edge Flaps. Journal of the American Helicopter Society, 2002, 47, 263.	0.8	47
167	Wind tunnel testing of a Mach-scaled rotor model with trailing-edge flaps. Smart Materials and Structures, 2001, 10, 1-14.	3.5	83
168	Analysis and Testing of Mach-Scaled Rotor with Trailing-Edge Flaps. AIAA Journal, 2000, 38, 1113-1124.	2.6	33
169	Analysis and testing of Mach-scaled rotor with trailing-edge flaps. AIAA Journal, 2000, 38, 1113-1124.	2.6	6