
Cherng-Yuan Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4347725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Water Removal from Palm Oil Reactant by Electrolysis on the Fuel Properties of Biodiesel. Processes, 2022, 10, 115.	2.8	5
2	Promising Strategies for the Reduction of Pollutant Emissions from Working Vessels in Offshore Wind Farms: The Example of Taiwan. Journal of Marine Science and Engineering, 2022, 10, 621.	2.6	2
3	Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review. Renewable and Sustainable Energy Reviews, 2021, 136, 110445.	16.4	119
4	Fluid Characteristics of Biodiesel Produced from Palm Oil with Various Initial Water Contents. Processes, 2021, 9, 309.	2.8	6
5	Comparison of Water-Removal Efficiency of Molecular Sieves Vibrating by Rotary Shaking and Electromagnetic Stirring from Feedstock Oil for Biofuel Production. Fermentation, 2021, 7, 132.	3.0	2
6	Cost-Benefit Evaluation on Promising Strategies in Compliance with Low Sulfur Policy of IMO. Journal of Marine Science and Engineering, 2021, 9, 3.	2.6	18
7	Investigation on Improving Strategies for Navigation Safety in the Offshore Wind Farm in Taiwan Strait. Journal of Marine Science and Engineering, 2021, 9, 1448.	2.6	4
8	Strategies for the Low Sulfur Policy of IMO—An Example of a Container Vessel Sailing through a European Route. Journal of Marine Science and Engineering, 2021, 9, 1383.	2.6	10
9	Emission characteristics of a diesel engine fueled with nanoemulsions of continuous diesel dispersed with solketal droplets. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55, 224-229.	1.7	2
10	Influences of Water Content in Feedstock Oil on Burning Characteristics of Fatty Acid Methyl Esters. Processes, 2020, 8, 1130.	2.8	17
11	Comparison of Engine Performance between Nano- and Microemulsions of Solketal Droplets Dispersed in Diesel Assisted by Microwave Irradiation. Molecules, 2019, 24, 3497.	3.8	5
12	Emulsification characteristics of nano-emulsions of solketal in diesel prepared using microwave irradiation. Fuel, 2018, 221, 165-170.	6.4	8
13	Effects of LED irradiation and sea water culture on the lipid characteristics of Nannochloropsis oculata. Journal of Renewable and Sustainable Energy, 2018, 10, 023102.	2.0	4
14	Influences of combustion improver content and motionless time on the stability of two-phase emulsions. Particulate Science and Technology, 2018, 36, 91-95.	2.1	4
15	Comparison of Fuel Properties of Nanoemulsions of Diesel Fuel Dispersed with Solketal by Microwave Irradiation and Mechanical Homogenization Methods. Energy & Fuels, 2018, 32, 11814-11820.	5.1	4
16	Comparison of lipid and biodiesel properties of <i>Chaetoceros muelleri</i> cultured in deep sea water and surface sea water. Journal of Renewable and Sustainable Energy, 2017, 9, .	2.0	5
17	Comparison of the Fuel Properties of Nitromethane Emulsions in Diesel and Biodiesel Assisted by Microwave Irradiation and Magnetic Stirring. Journal of Dispersion Science and Technology, 2016, 37, 1334-1340.	2.4	6
18	Emulsification characteristics of three-phase emulsion of biodiesel-in nitromethane-in-diesel prepared by microwave irradiation. Fuel. 2015. 158. 50-56.	6.4	12

CHERNG-YUAN LIN

#	Article	IF	CITATIONS
19	Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics. Frontiers in Energy Research, 2014, 2, .	2.3	4
20	Thermal Performance of a Vapor Chamber-Based Plate of High-Power Light-Emitting Diodes Filled with Al ₂ O ₃ Nanofluid. Journal of Nanoscience and Nanotechnology, 2013, 13, 2871-2878.	0.9	9
21	Effects of Biodiesel Blend on Marine Fuel Characteristics for Marine Vessels. Energies, 2013, 6, 4945-4955.	3.1	24
22	Fuel Characteristics of Biodiesel Produced from a High-Acid Oil from Soybean Soapstock by Supercritical-Methanol Transesterification. Energies, 2012, 5, 2370-2380.	3.1	64
23	Application of mesoporous catalysts over palm-oil biodiesel for adjusting fuel properties. Energy Conversion and Management, 2012, 53, 128-134.	9.2	29
24	Cost–benefit evaluation of using biodiesel as an alternative fuel for fishing boats in Taiwan. Marine Policy, 2012, 36, 103-107.	3.2	23
25	Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration. Applied Energy, 2011, 88, 4527-4533.	10.1	86
26	Fuel properties of biodiesel produced from Camellia oleifera Abel oil through supercritical-methanol transesterification. Fuel, 2011, 90, 2240-2244.	6.4	32
27	Burning characteristics of palm-oil biodiesel under long-term storage conditions. Energy Conversion and Management, 2010, 51, 1464-1467.	9.2	37
28	Fuel properties of biodiesel produced from the crude fish oil from the soapstock of marine fish. Fuel Processing Technology, 2009, 90, 130-136.	7.2	168
29	Engine performance and emission characteristics of marine fish-oil biodiesel produced from the discarded parts of marine fish. Fuel Processing Technology, 2009, 90, 883-888.	7.2	199
30	Effects of Oxidation during Long-term Storage on the Fuel Properties of Palm Oil-based Biodiesel. Energy & Fuels, 2009, 23, 3285-3289.	5.1	34
31	Comparison of fuel properties and emission characteristics of two- and three-phase emulsions prepared by ultrasonically vibrating and mechanically homogenizing emulsification methods. Fuel, 2008, 87, 2154-2161.	6.4	147
32	Effects of emulsification variables on fuel properties of two- and three-phase biodiesel emulsions. Fuel, 2007, 86, 210-217.	6.4	118
33	Engine performance and emission characteristics of a three-phase emulsion of biodiesel produced by peroxidation. Fuel Processing Technology, 2007, 88, 35-41.	7.2	131
34	Diesel engine performance and emission characteristics of biodiesel produced by the peroxidation process. Fuel, 2006, 85, 298-305.	6.4	180
35	Emulsification characteristics of three- and two-phase emulsions prepared by the ultrasonic emulsification method. Fuel Processing Technology, 2006, 87, 309-317.	7.2	115
36	Correlation of Black Smoke and Nitrogen Oxides Emissions Through Field Testing of in-Use Diesel Vehicles. Environmental Monitoring and Assessment, 2006, 116, 291-305.	2.7	5

#	Article	IF	CITATIONS
37	Effects of Diesel Engine Speed and Water Content on Emission Characteristics of Three-Phase Emulsions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, 39, 1345-1359.	1.7	25
38	Influences of Calcium Oxide Content in Marine Fuel Oil on Emission Characteristics of Marine Furnaces Under Varying Humidity and Temperature of the Inlet Air. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, 39, 281-297.	1.7	4
39	The fuel properties of three-phase emulsions as an alternative fuel for diesel engines⋆. Fuel, 2003, 82, 1367-1375.	6.4	106
40	Emission of Burning Emulsified Diesel Oil with Sodium Sulfate in Salty Atmospheric Air. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 2943-2954.	1.7	4
41	EFFECTS OF Da AND Re ON PREMIXED FLAME SPEED. Chemical Engineering Communications, 1996, 155, 65-72.	2.6	2