
## Cagdas D Son

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4347665/publications.pdf Version: 2024-02-01



CACDAS D SON

| #  | Article                                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nicotine up-regulates α4β2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning. Journal of General Physiology, 2011, 137, 59-79.                                                                                                                                                                      | 1.9 | 153       |
| 2  | Nicotine is a Selective Pharmacological Chaperone of Acetylcholine Receptor Number and Stoichiometry. Implications for Drug Discovery. AAPS Journal, 2009, 11, 167-177.                                                                                                                                                         | 4.4 | 148       |
| 3  | Nicotine Normalizes Intracellular Subunit Stoichiometry of Nicotinic Receptors Carrying Mutations<br>Linked to Autosomal Dominant Nocturnal Frontal Lobe Epilepsy. Molecular Pharmacology, 2009, 75,<br>1137-1148.                                                                                                              | 2.3 | 55        |
| 4  | ldentification of Ligand Binding Regions of theSaccharomyces cerevisiaeα-Factor Pheromone Receptor<br>by Photoaffinity Cross-Linkingâ€. Biochemistry, 2004, 43, 13193-13203.                                                                                                                                                    | 2.5 | 48        |
| 5  | Unnatural Amino Acid Replacement in a Yeast G Protein-Coupled Receptor in Its Native Environment.<br>Biochemistry, 2008, 47, 5638-5648.                                                                                                                                                                                         | 2.5 | 47        |
| 6  | Identification of a Contact Region between the Tridecapeptide α-Factor Mating Pheromone<br>ofSaccharomyces cerevisiaeand Its G Protein-Coupled Receptor by Photoaffinity Labelingâ€.<br>Biochemistry, 2002, 41, 6128-6139.                                                                                                      | 2.5 | 38        |
| 7  | Sequences in the Intracellular Loops of the Yeast Pheromone Receptor Ste2p Required for G Protein Activationâ€. Biochemistry, 2003, 42, 3004-3017.                                                                                                                                                                              | 2.5 | 32        |
| 8  | Tyr266 in the Sixth Transmembrane Domain of the Yeast α-Factor Receptor Plays Key Roles in Receptor<br>Activation and Ligand Specificity. Biochemistry, 2002, 41, 13681-13689.                                                                                                                                                  | 2.5 | 27        |
| 9  | Cross-Linking of a DOPA-Containing Peptide Ligand into Its G Protein-Coupled Receptor. Biochemistry, 2009, 48, 2033-2044.                                                                                                                                                                                                       | 2.5 | 25        |
| 10 | Affinity purification and characterization of a G-protein coupled receptor, Saccharomyces cerevisiae<br>Ste2p. Protein Expression and Purification, 2007, 56, 62-71.                                                                                                                                                            | 1.3 | 20        |
| 11 | Analysis of ligand-receptor cross-linked fragments by mass spectrometry*. Chemical Biology and Drug Design, 2005, 65, 418-426.                                                                                                                                                                                                  | 1.1 | 19        |
| 12 | The yeast Ste2p G protein-coupled receptor dimerizes on the cell plasma membrane. Biochimica Et<br>Biophysica Acta - Biomembranes, 2017, 1859, 698-711.                                                                                                                                                                         | 2.6 | 13        |
| 13 | GPCR-Gα protein precoupling: Interaction between Ste2p, a yeast GPCR, and Gpa1p, its Gα protein, is<br>formed before ligand binding via the Ste2p C-terminal domain and the Gpa1p N-terminal domain.<br>Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2435-2446.                                                    | 2.6 | 11        |
| 14 | Three dimensional structure prediction of panomycocin, a novel Exo-Î <sup>2</sup> -1,3-glucanase isolated from Wickerhamomyces anomalus NCYC 434 and the computational site-directed mutagenesis studies to enhance its thermal stability for therapeutic applications. Computational Biology and Chemistry, 2019, 80, 270-277. | 2.3 | 9         |
| 15 | Allergen fragrance molecules: a potential relief for COVID-19. BMC Complementary Medicine and Therapies, 2021, 21, 41.                                                                                                                                                                                                          | 2.7 | 6         |
| 16 | Ste2p Under the Microscope: the Investigation of Oligomeric States of a Yeast G Protein-Coupled Receptor. Journal of Physical Chemistry B, 2021, 125, 9526-9536.                                                                                                                                                                | 2.6 | 4         |
| 17 | GPCRsort—Responding to the Next Generation Sequencing Data Challenge: Prediction of G<br>Protein-Coupled Receptor Classes Using Only Structural Region Lengths. OMICS A Journal of<br>Integrative Biology, 2014, 18, 636-644.                                                                                                   | 2.0 | 3         |