Clare A Stokes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4347659/publications.pdf

Version: 2024-02-01

623734 552781 29 703 14 26 citations h-index g-index papers 31 31 31 575 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nicotinic Activity of Arecoline, the Psychoactive Element of "Betel Nuts", Suggests a Basis for Habitual Use and Anti-Inflammatory Activity. PLoS ONE, 2015, 10, e0140907.	2.5	96
2	Looking below the surface of nicotinic acetylcholine receptors. Trends in Pharmacological Sciences, 2015, 36, 514-523.	8.7	76
3	Working with OpusXpress: Methods for high volume oocyte experiments. Methods, 2010, 51, 121-133.	3.8	64
4	The Structural Basis for GTS-21 Selectivity between Human and Rat Nicotinic $\hat{l}\pm7$ Receptors. Molecular Pharmacology, 2004, 66, 14-24.	2.3	54
5	Antagonist activities of mecamylamine and nicotine show reciprocal dependence on beta subunit sequence in the second transmembrane domain. British Journal of Pharmacology, 1999, 127, 1337-1348.	5.4	47
6	Critical Molecular Determinants of $\hat{l}\pm7$ Nicotinic Acetylcholine Receptor Allosteric Activation. Journal of Biological Chemistry, 2016, 291, 5049-5067.	3.4	43
7	The Activity of GAT107, an Allosteric Activator and Positive Modulator of α7 Nicotinic Acetylcholine Receptors (nAChR), Is Regulated by Aromatic Amino Acids That Span the Subunit Interface. Journal of Biological Chemistry, 2014, 289, 4515-4531.	3.4	36
8	Persistent activation of $\hat{l}\pm7$ nicotinic ACh receptors associated with stable induction of different desensitized states. British Journal of Pharmacology, 2018, 175, 1838-1854.	5.4	31
9	Cysteine accessibility analysis of the human alpha7 nicotinic acetylcholine receptor ligand-binding domain identifies L119 as a gatekeeper. Neuropharmacology, 2011, 60, 159-171.	4.1	26
10	Cracking the Betel Nut: Cholinergic Activity of Areca Alkaloids and Related Compounds. Nicotine and Tobacco Research, 2019, 21, 805-812.	2.6	25
11	Allosteric Agonism of $\hat{l}\pm7$ Nicotinic Acetylcholine Receptors: Receptor Modulation Outside the Orthosteric Site. Molecular Pharmacology, 2019, 95, 606-614.	2.3	24
12	Macroscopic and Microscopic Activation of $\langle i \rangle \hat{l}_{\pm} \langle i \rangle 7$ Nicotinic Acetylcholine Receptors by the Structurally Unrelated Allosteric Agonist-Positive Allosteric Modulators (ago-PAMs) B-973B and GAT107. Molecular Pharmacology, 2019, 95, 43-61.	2.3	21
13	The Antinociceptive and Anti-Inflammatory Properties of the <i>α</i> 7 nAChR Weak Partial Agonist <i>p</i> 6. Achiology and Experimental Therapeutics, 2018, 367, 203-214.	2.5	17
14	Identification of α7 Nicotinic Acetylcholine Receptor Silent Agonists Based on the Spirocyclic Quinuclidineâ€Î" ² â€Isoxazoline Scaffold: Synthesis and Electrophysiological Evaluation. ChemMedChem, 2017, 12, 1335-1348.	3.2	15
15	Synthesis, Pharmacological Characterization, and Structure–Activity Relationships of Noncanonical Selective Agonists for l±7 nAChRs. Journal of Medicinal Chemistry, 2019, 62, 10376-10390.	6.4	12
16	Design, synthesis, and electrophysiological evaluation of NS6740 derivatives: Exploration of the structure-activity relationship for alpha7 nicotinic acetylcholine receptor silent activation. European Journal of Medicinal Chemistry, 2020, 205, 112669.	5.5	12
17	Differing Activity Profiles of the Stereoisomers of 2,3,5,6TMP-TQS, a Putative Silent Allosteric Modulator of <i>α</i> 7 nAChR. Molecular Pharmacology, 2020, 98, 292-302.	2.3	12
18	NS6740, an $\hat{l}\pm7$ nicotinic acetylcholine receptor silent agonist, disrupts hippocampal synaptic plasticity. Neuroscience Letters, 2018, 677, 6-13.	2.1	11

#	Article	IF	CITATIONS
19	Comparison of the Anti-inflammatory Properties of Two Nicotinic Acetylcholine Receptor Ligands, Phosphocholine and pCF3-diEPP. Frontiers in Cellular Neuroscience, 2022, 16, 779081.	3.7	11
20	Sulfonium as a Surrogate for Ammonium: A New $\hat{l}_{\pm}7$ Nicotinic Acetylcholine Receptor Partial Agonist with Desensitizing Activity. Journal of Medicinal Chemistry, 2017, 60, 7928-7934.	6.4	10
21	Heteromeric Neuronal Nicotinic Acetylcholine Receptors with Mutant $\langle i \rangle \hat{l}^2 \langle i \rangle$ Subunits Acquire Sensitivity to $\langle i \rangle \hat{l} \pm \langle i \rangle$ 7-Selective Positive Allosteric Modulators. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 252-268.	2.5	10
22	Allosterically Potentiated $\langle i \rangle \hat{l} \pm \langle j \rangle 7$ Nicotinic Acetylcholine Receptors: Reduced Calcium Permeability and Current-Independent Control of Intracellular Calcium. Molecular Pharmacology, 2020, 98, 695-709.	2.3	10
23	Nicotinic Acetylcholine Receptor Accessory Subunits Determine the Activity Profile of Epibatidine Derivatives. Molecular Pharmacology, 2020, 98, 328-342.	2.3	10
24	Selective Agonists and Antagonists of $\hat{l}\pm 9$ Versus $\hat{l}\pm 7$ Nicotinic Acetylcholine Receptors. ACS Chemical Neuroscience, 2022, 13, 624-637.	3.5	10
25	Novel 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazoles to investigate the activation of the $\hat{l}\pm7$ nicotinic acetylcholine receptor subtype: Synthesis and electrophysiological evaluation. European Journal of Medicinal Chemistry, 2018, 160, 207-228.	5.5	9
26	The Allosteric Activation of $\hat{l}\pm7$ nAChR by $\hat{l}\pm$ -Conotoxin MrIC Is Modified by Mutations at the Vestibular Site. Toxins, 2021, 13, 555.	3.4	5
27	Stable desensitization of $\hat{l}\pm7$ nicotinic acetylcholine receptors by NS6740 requires interaction with S36 in the orthosteric agonist binding site. European Journal of Pharmacology, 2021, 905, 174179.	3.5	4
28	Sulfonium Ligands of the α7 nAChR. Molecules, 2021, 26, 5643.	3.8	2
29	Structureâ€Activity Relationships of Selective Pyrimidine Agonists on α7â€nAChRs. FASEB Journal, 2019, 33, 667.9.	0.5	0