Lutz Tautz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4347235/publications.pdf

Version: 2024-02-01

		172457	182427
54	2,718	29	51
papers	citations	h-index	g-index
55	55	55	3411
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nature Genetics, 2005, 37, 1317-1319.	21.4	643
2	Protein Tyrosine Phosphatases in Autoimmunity. Annual Review of Immunology, 2008, 26, 29-55.	21.8	164
3	Inhibitor of the Tyrosine Phosphatase STEP Reverses Cognitive Deficits in a Mouse Model of Alzheimer's Disease. PLoS Biology, 2014, 12, e1001923.	5.6	119
4	LYP inhibits T-cell activation when dissociated from CSK. Nature Chemical Biology, 2012, 8, 437-446.	8.0	118
5	Covalent decoration of multi-walled carbon nanotubes with silica nanoparticles. Chemical Communications, 2005, , 758.	4.1	104
6	Protein Tyrosine Phosphatases: Structure, Function, and Implication in Human Disease. Methods in Molecular Biology, 2013, 1053, 179-221.	0.9	104
7	Targeting the PTPome in human disease. Expert Opinion on Therapeutic Targets, 2006, 10, 157-177.	3.4	101
8	The lipid-binding SEC14 domain. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 719-726.	2.4	100
9	Protein tyrosine phosphatases in T cell physiology. Molecular Immunology, 2004, 41, 687-700.	2.2	84
10	NMR-based techniques in the hit identification and optimisation processes. Expert Opinion on Therapeutic Targets, 2004, 8, 597-611.	3.4	69
11	Inhibition of Yersinia Tyrosine Phosphatase by Furanyl Salicylate Compounds. Journal of Biological Chemistry, 2005, 280, 9400-9408.	3.4	58
12	An Adamantyl-Substituted Retinoid-Derived Molecule That Inhibits Cancer Cell Growth and Angiogenesis by Inducing Apoptosis and Binds to Small Heterodimer Partner Nuclear Receptor:Â Effects of Modifying Its Carboxylate Group on Apoptosis, Proliferation, and Protein-Tyrosine Phosphatase Activity. Journal of Medicinal Chemistry, 2007, 50, 2622-2639.	6.4	57
13	Cervix carcinoma is associated with an up-regulation and nuclear localization of the dual-specificity protein phosphatase VHR. BMC Cancer, 2008, 8, 147.	2.6	53
14	Multidentate Small-Molecule Inhibitors of <i>Vaccinia</i> H1-Related (VHR) Phosphatase Decrease Proliferation of Cervix Cancer Cells. Journal of Medicinal Chemistry, 2009, 52, 6716-6723.	6.4	53
15	Low-Molecular-Weight Protein Tyrosine Phosphatases of <i>Bacillus subtilis </i> Bacteriology, 2005, 187, 4945-4956.	2.2	51
16	In Vitro Characterization of the <i>Bacillus subtilis </i> Protein Tyrosine Phosphatase YwqE. Journal of Bacteriology, 2005, 187, 3384-3390.	2.2	49
17	Strategies for developing protein tyrosine phosphatase inhibitors. Methods, 2007, 42, 250-260.	3 . 8	48
18	The autoimmune-predisposing variant of lymphoid tyrosine phosphatase favors T helper 1 responses. Human Immunology, 2013, 74, 574-585.	2.4	48

#	Article	IF	CITATIONS
19	A Conserved Mechanism for Control of Human and Mouse Embryonic Stem Cell Pluripotency and Differentiation by Shp2 Tyrosine Phosphatase. PLoS ONE, 2009, 4, e4914.	2.5	48
20	Dual-Specificity Phosphatase 3 Deficiency or Inhibition Limits Platelet Activation and Arterial Thrombosis. Circulation, 2015, 131, 656-668.	1.6	42
21	Structure of the Hematopoietic Tyrosine Phosphatase (HePTP) Catalytic Domain: Structure of a KIM Phosphatase with Phosphate Bound at the Active Site. Journal of Molecular Biology, 2005, 354, 150-163.	4.2	39
22	Adamantyl-Substituted Retinoid-Derived Molecules That Interact with the Orphan Nuclear Receptor Small Heterodimer Partner: Effects of Replacing the 1-Adamantyl or Hydroxyl Group on Inhibition of Cancer Cell Growth, Induction of Cancer Cell Apoptosis, and Inhibition of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase-2 Activity. Journal of Medicinal Chemistry, 2008, 51, 5650-5662.	6.4	38
23	Development of Molecular Probes for Second-Site Screening and Design of Protein Tyrosine Phosphatase Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 2137-2143.	6.4	37
24	Discovery of a novel submicromolar inhibitor of the lymphoid specific tyrosine phosphatase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2840-2844.	2.2	37
25	Identification and characterization of DUSP27, a novel dual-specific protein phosphatase. FEBS Letters, 2007, 581, 2527-2533.	2.8	36
26	Inhibition of Lymphoid Tyrosine Phosphatase by Benzofuran Salicylic Acids. Journal of Medicinal Chemistry, 2011, 54, 562-571.	6.4	35
27	Lipid Raft Targeting of Hematopoietic Protein Tyrosine Phosphatase by Protein Kinase C Î,-Mediated Phosphorylation. Molecular and Cellular Biology, 2006, 26, 1806-1816.	2.3	32
28	In Silico Screening for PTPN22 Inhibitors: Active Hits from an Inactive Phosphatase Conformation. ChemMedChem, 2009, 4, 440-444.	3. 2	32
29	The Minimal Essential Core of a Cysteine-based Protein-tyrosine Phosphatase Revealed by a Novel 16-kDa VH1-like Phosphatase, VHZ. Journal of Biological Chemistry, 2004, 279, 35768-35774.	3.4	31
30	Inhibition of Hematopoietic Protein Tyrosine Phosphatase Augments and Prolongs ERK1/2 and p38 Activation. ACS Chemical Biology, 2012, 7, 367-377.	3.4	31
31	Design, Synthesis, and Characterization of an Orally Active Dual-Specific ULK1/2 Autophagy Inhibitor that Synergizes with the PARP Inhibitor Olaparib for the Treatment of Triple-Negative Breast Cancer. Journal of Medicinal Chemistry, 2020, 63, 14609-14625.	6.4	30
32	A Weak Lck Tail Bite Is Necessary for Lck Function in T Cell Antigen Receptor Signaling. Journal of Biological Chemistry, 2007, 282, 36000-36009.	3 . 4	29
33	Perspective: Tyrosine phosphatases as novel targets for antiplatelet therapy. Bioorganic and Medicinal Chemistry, 2015, 23, 2786-2797.	3.0	25
34	Yersinia Phosphatase Induces Mitochondrially Dependent Apoptosis of T Cells. Journal of Biological Chemistry, 2005, 280, 10388-10394.	3 . 4	24
35	Visualizing Active-Site Dynamics in Single Crystals of HePTP: Opening of the WPD Loop Involves Coordinated Movement of the E Loop. Journal of Molecular Biology, 2011, 405, 619-629.	4.2	23
36	TCR-induced downregulation of protein tyrosine phosphatase PEST augments secondary T cell responses. Molecular Immunology, 2008, 45, 3074-3084.	2.2	22

#	Article	IF	CITATIONS
37	VHY, a Novel Myristoylated Testis-restricted Dual Specificity Protein Phosphatase Related to VHX. Journal of Biological Chemistry, 2004, 279, 32586-32591.	3.4	20
38	A cellular target engagement assay for the characterization of SHP2 (PTPN11) phosphatase inhibitors. Journal of Biological Chemistry, 2020, 295, 2601-2613.	3.4	16
39	Crystal structure of NMA1982 from <i>Neisseria meningitidis</i> at 1.5 à resolution provides a structural scaffold for nonclassical, eukaryotic″ike phosphatases. Proteins: Structure, Function and Bioinformatics, 2007, 69, 415-421.	2.6	11
40	High-Throughput Screening for Protein Tyrosine Phosphatase Activity Modulators. Methods in Molecular Biology, 2013, 1053, 223-240.	0.9	8
41	Inhibition of the Hematopoietic Protein Tyrosine Phosphatase by Phenoxyacetic Acids. ACS Medicinal Chemistry Letters, 2011, 2, 113-118.	2.8	7
42	PTP1B: a new therapeutic target for Rett syndrome. Journal of Clinical Investigation, 2015, 125, 2931-2934.	8.2	7
43	Adsorption of Streptavidin onto Single-Walled Carbon Nanotubes: Application in Fluorescent Supramolecular Nanoassemblies. Journal of Nanoscience and Nanotechnology, 2006, 6, 3693-3698.	0.9	6
44	Development of a Robust High-Throughput Screening Platform for Inhibitors of the Striatal-Enriched Tyrosine Phosphatase (STEP). International Journal of Molecular Sciences, 2021, 22, 4417.	4.1	6
45	Discovery of novel furanylbenzamide inhibitors that target oncogenic tyrosine phosphatase SHP2 in leukemia cells. Journal of Biological Chemistry, 2022, 298, 101477.	3.4	6
46	A Highly Convergent Synthesis of Myristoyl arba(dethia) oenzyme A. European Journal of Organic Chemistry, 2010, 2010, 1728-1735.	2.4	5
47	Evaluating Effects of Tyrosine Phosphatase Inhibitors on T Cell Receptor Signaling. Methods in Molecular Biology, 2013, 1053, 241-270.	0.9	3
48	Structural Stability of Azurin Encapsulated in Sol-Gel Glasses: A Fluorometric Study. Journal of Sol-Gel Science and Technology, 2004, 30, 205-214.	2.4	2
49	Distinct functional and conformational states of the human lymphoid tyrosine phosphatase catalytic domain can be targeted by choice of the inhibitor chemotype. Journal of Computer-Aided Molecular Design, 2011, 25, 873-883.	2.9	2
50	Functional Analysis of Protein Tyrosine Phosphatases in Thrombosis and Hemostasis. Methods in Molecular Biology, 2016, 1447, 301-330.	0.9	2
51	Assessing Cellular Target Engagement by SHP2 (PTPN11) Phosphatase Inhibitors. Journal of Visualized Experiments, 2020, , .	0.3	2
52	PTPome-wide functional RNA interference screening methods. Methods, 2007, 42, 306-312.	3.8	1
53	Dynamic interaction between lymphoid tyrosine phosphatase and Câ€terminal Src kinase controls T cell activation. FASEB Journal, 2012, 26, 766.11.	0.5	0
54	Inhibition of Hematopoietic Protein Tyrosine Phosphatase Augments and Prolongs ERK1/2 and p38 Activation. FASEB Journal, 2012, 26, 766.12.	0.5	0