List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4347170/publications.pdf Version: 2024-02-01

DENC SUI

#	Article	IF	CITATIONS
1	The Toggle Switch Model for Gene Expression Change during the Prenatal-to-Postnatal Transition in Mammals. Molecular Biology and Evolution, 2022, 39, .	8.9	2
2	Phylogenetic relationships of the zokor genus <i>Eospalax</i> (Mammalia, Rodentia,) Tj ETQq0 0 0 rgE Hengduan Mountains. Zoological Research, 2022, 43, 331-342.	3T /Overloc 2.1	k 10 Tf 50 7 7
3	Microbiome–host-phylogeny relationships in animal gastrointestinal tract microbiomes. FEMS Microbiology Ecology, 2022, 98, .	2.7	3
4	Gene losses may contribute to subterranean adaptations in naked mole-rat and blind mole-rat. BMC Biology, 2022, 20, 44.	3.8	10
5	A New Homotetramer Hemoglobin in the Pulmonary Surfactant of Plateau Zokors (Myospalax Baileyi). Frontiers in Genetics, 2022, 13, 824049.	2.3	2
6	Integrative Functional Transcriptomic Analyses Implicate Shared Molecular Circuits in Sensorineural Hearing Loss. Frontiers in Cellular Neuroscience, 2022, 16, 857344.	3.7	3
7	Molecular convergence and transgenic evidence suggest a single origin of laryngeal echolocation in bats. IScience, 2022, 25, 104114.	4.1	4
8	A single mutation underlying phenotypic convergence for hypoxia adaptation on the Qinghai-Tibetan Plateau. Cell Research, 2021, 31, 1032-1035.	12.0	11
9	Echolocation in soft-furred tree mice. Science, 2021, 372, .	12.6	28
10	Cochlear hair cells of echolocating bats are immune to intense noise. Journal of Genetics and Genomics, 2021, 48, 984-993.	3.9	3
11	Phenotypic and genomic adaptations to the extremely high elevation in plateau zokor (<i>Myospalax) Tj ETQq1 1</i>	0,784314	l rgBT /Over
12	A New World Monkey Resembles Human in Bitter Taste Receptor Evolution and Function via a Single Parallel Amino Acid Substitution. Molecular Biology and Evolution, 2021, 38, 5472-5479.	8.9	3
13	RETSAT Mutation Selected for Hypoxia Adaptation Inhibits Tumor Growth. Frontiers in Cell and Developmental Biology, 2021, 9, 744992.	3.7	4
14	Convergent genomic signatures of high-altitude adaptation among domestic mammals. National Science Review, 2020, 7, 952-963.	9.5	52
15	Genomic analysis of Asian honeybee populations in China reveals evolutionary relationships and adaptation to abiotic stress. Ecology and Evolution, 2020, 10, 13427-13438.	1.9	8
16	PAQR4 promotes chemoresistance in non-small cell lung cancer through inhibiting Nrf2 protein degradation. Theranostics, 2020, 10, 3767-3778.	10.0	50
17	The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome Biology and Evolution, 2019, 11, 72-85.	2.5	41
18	Comparative Analysis of the Liver and Spleen Transcriptomes between Holstein and Yunnan Humped Cattle. Animals, 2019, 9, 527.	2.3	3

#	Article	IF	CITATIONS
19	YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nature Communications, 2019, 10, 4892.	12.8	256
20	Identifying Lineage-Specific Targets of Natural Selection by a Bayesian Analysis of Genomic Polymorphisms and Divergence from Multiple Species. Molecular Biology and Evolution, 2019, 36, 1302-1315.	8.9	21
21	Genomic and functional evidence reveals molecular insights into the origin of echolocation in whales. Science Advances, 2018, 4, eaat8821.	10.3	22
22	Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8406-8411.	7.1	119
23	Down-Regulation of <i>EPAS1</i> Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Molecular Biology and Evolution, 2017, 34, msw280.	8.9	87
24	Lipidome determinants of maximal lifespan in mammals. Scientific Reports, 2017, 7, 5.	3.3	60
25	CTCF prevents genomic instability by promoting homologous recombination-directed DNA double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10912-10917.	7.1	64
26	Functional Effects of a Retained Ancestral Polymorphism in <i>Prestin</i> . Molecular Biology and Evolution, 2017, 34, 88-92.	8.9	10
27	Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals. Current Biology, 2016, 26, 1873-1879.	3.9	281
28	Independent Birth of a Novel TRIMCyp in Tupaia belangeri with a Divergent Function from Its Paralog TRIM5. Molecular Biology and Evolution, 2014, 31, 2985-2997.	8.9	17
29	Repeated functional convergent effects of Na _V 1.7 on acid insensitivity in hibernating mammals. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132950.	2.6	24
30	Parallel Sites Implicate Functional Convergence of the Hearing Gene Prestin among Echolocating Mammals. Molecular Biology and Evolution, 2014, 31, 2415-2424.	8.9	77
31	Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME Journal, 2014, 8, 881-893.	9.8	206
32	Large-Scale Survey of Gut Microbiota Associated With MHE Via 16S rRNA-Based Pyrosequencing. American Journal of Gastroenterology, 2013, 108, 1601-1611.	0.4	149
33	Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genomics, 2013, 14, 669.	2.8	168
34	Hearing Aid for Vertebrates via Multiple Episodic Adaptive Events on Prestin Genes. Molecular Biology and Evolution, 2012, 29, 2187-2198.	8.9	22
35	The yak genome and adaptation to life at high altitude. Nature Genetics, 2012, 44, 946-949.	21.4	708
36	Phylogenomic reconstruction of lactic acid bacteria: an update. BMC Evolutionary Biology, 2011, 11, 1.	3.2	312

#	Article	IF	CITATIONS
37	Parallel Evolution of KCNQ4 in Echolocating Bats. PLoS ONE, 2011, 6, e26618.	2.5	39
38	More Functional V1R Genes Occur in Nest-Living and Nocturnal Terricolous Mammals. Genome Biology and Evolution, 2010, 2, 277-283.	2.5	28
39	Comparative genomic analysis reveals more functional nasal chemoreceptors in nocturnal mammals than in diurnal mammals. Science Bulletin, 2010, 55, 3901-3910.	1.7	9
40	The hearing gene Prestin unites echolocating bats and whales. Current Biology, 2010, 20, R55-R56.	3.9	178
41	Molecular and evolutionary analyses of formyl peptide receptors suggest the absence of VNO-specific FPRs in primates. Journal of Genetics and Genomics, 2010, 37, 771-778.	3.9	10
42	Large Gene Family Expansions and Adaptive Evolution for Odorant and Gustatory Receptors in the Pea Aphid, Acyrthosiphon pisum. Molecular Biology and Evolution, 2009, 26, 2073-2086.	8.9	176
43	Largest Vertebrate Vomeronasal Type 1 Receptor Gene Repertoire in the Semiaquatic Platypus. Molecular Biology and Evolution, 2007, 24, 2153-2157.	8.9	81
44	Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Research, 2007, 17, 166-174.	5.5	186
45	More genes underwent positive selection in chimpanzee evolution than in human evolution. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7489-7494.	7.1	191
46	Evolutionary dynamics of the ABCA chromosome 17q24 cluster genes in vertebrates. Genomics, 2007, 89, 385-391.	2.9	15
47	Contrasting Modes of Evolution Between Vertebrate Sweet/Umami Receptor Genes and Bitter Receptor Genes. Molecular Biology and Evolution, 2006, 23, 292-300.	8.9	236
48	Evolutionary implications of Avian Infectious Bronchitis Virus (AIBV) analysis. Cell Research, 2006, 16, 323-327.	12.0	7
49	Did brain-specific genes evolve faster in humans than in chimpanzees?. Trends in Genetics, 2006, 22, 608-613.	6.7	50
50	Adaptive Diversification of Vomeronasal Receptor 1 Genes in Rodents. Journal of Molecular Evolution, 2005, 60, 566-576.	1.8	56
51	Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5767-5772.	7.1	175
52	Independent origin of the growth hormone gene family in New World monkeys and Old World monkeys/hominoids. Journal of Molecular Endocrinology, 2005, 35, 399-409.	2.5	24
53	Molecular evolution of growth hormone gene family in old world monkeys and hominoids. Gene, 2005, 350, 183-192.	2.2	19
54	Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics, 2005, 86, 306-315.	2.9	136

#	Article	IF	CITATIONS
55	Bitter and sweet/umami taste receptors with differently evolutionary pathways. Journal of Genetics and Genomics, 2005, 32, 346-53.	0.3	0
56	Adaptive Diversification of Bitter Taste Receptor Genes in Mammalian Evolution. Molecular Biology and Evolution, 2003, 20, 805-814.	8.9	257
57	Interspecies Implantation and Mitochondria Fate of Panda-Rabbit Cloned Embryos1. Biology of Reproduction, 2002, 67, 637-642.	2.7	125
58	Melanocortin-1 receptor gene variants in four Chinese ethnic populations. Cell Research, 2001, 11, 81-84.	12.0	30
59	Microsatellite DNA analysis proves nucleus of interspecies reconstructed blastocyst coming from that of donor giant panda. Science Bulletin, 2000, 45, 1883-1885.	1.7	3