Yulan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/434714/publications.pdf

Version: 2024-02-01

284 papers 18,930 citations

13865 67 h-index 129 g-index

300 all docs

300 docs citations

300 times ranked

19573 citing authors

#	Article	IF	CITATIONS
1	Threeâ€Dimensional Nitrogen and Boron Coâ€doped Graphene for Highâ€Performance Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2012, 24, 5130-5135.	21.0	1,270
2	Toughening Elastomers with Sacrificial Bonds and Watching Them Break. Science, 2014, 344, 186-189.	12.6	842
3	From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angewandte Chemie - International Edition, 2012, 51, 7640-7654.	13.8	725
4	Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nature Chemistry, 2012, 4, 559-562.	13.6	567
5	Light-Harvesting Conjugated Microporous Polymers: Rapid and Highly Efficient Flow of Light Energy with a Porous Polyphenylene Framework as Antenna. Journal of the American Chemical Society, 2010, 132, 6742-6748.	13.7	549
6	Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nature Communications, 2013, 4, 2736.	12.8	528
7	CMPs as Scaffolds for Constructing Porous Catalytic Frameworks: A Built-in Heterogeneous Catalyst with High Activity and Selectivity Based on Nanoporous Metalloporphyrin Polymers. Journal of the American Chemical Society, 2010, 132, 9138-9143.	13.7	506
8	Highâ€Performance Electrocatalysts for Oxygen Reduction Derived from Cobalt Porphyrinâ€Based Conjugated Mesoporous Polymers. Advanced Materials, 2014, 26, 1450-1455.	21.0	425
9	New synthetic strategies toward covalent organic frameworks. Chemical Society Reviews, 2020, 49, 2852-2868.	38.1	394
10	Photoelectric Covalent Organic Frameworks: Converting Open Lattices into Ordered Donor–Acceptor Heterojunctions. Journal of the American Chemical Society, 2014, 136, 9806-9809.	13.7	356
11	Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nature Communications, 2016, 7, 11741.	12.8	332
12	An <i>n</i> -Channel Two-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2011, 133, 14510-14513.	13.7	330
13	Light-Emitting Conjugated Polymers with Microporous Network Architecture: Interweaving Scaffold Promotes Electronic Conjugation, Facilitates Exciton Migration, and Improves Luminescence. Journal of the American Chemical Society, 2011, 133, 17622-17625.	13.7	297
14	Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 16902-16909.	13.8	293
15	Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Science Advances, 2016, 2, e1501038.	10.3	282
16	On-Surface Synthesis of Rylene-Type Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 4022-4025.	13.7	278
17	An Ambipolar Conducting Covalent Organic Framework with Selfâ€Sorted and Periodic Electron Donorâ€Acceptor Ordering. Advanced Materials, 2012, 24, 3026-3031.	21.0	258
18	Porous organic polymers: a promising platform for efficient photocatalysis. Materials Chemistry Frontiers, 2020, 4, 332-353.	5.9	256

#	Article	IF	CITATIONS
19	Superb Alkaline Hydrogen Evolution and Simultaneous Electricity Generation by Ptâ€Decorated Ni ₃ N Nanosheets. Advanced Energy Materials, 2017, 7, 1601390.	19.5	225
20	Highâ€Lithiumâ€Affinity Chemically Exfoliated 2D Covalent Organic Frameworks. Advanced Materials, 2019, 31, e1901640.	21.0	217
21	Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters. Chemical Communications, 2011, 47, 1979.	4.1	215
22	Creation of Superheterojunction Polymers via Direct Polycondensation: Segregated and Bicontinuous Donor–Acceptor π-Columnar Arrays in Covalent Organic Frameworks for Long-Lived Charge Separation. Journal of the American Chemical Society, 2015, 137, 7817-7827.	13.7	213
23	2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 5612-5624.	13.8	198
24	A Redoxâ€Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angewandte Chemie - International Edition, 2020, 59, 5273-5277.	13.8	189
25	Benzothiadiazole functionalized D–A type covalent organic frameworks for effective photocatalytic reduction of aqueous chromium(<scp>vi</scp>). Journal of Materials Chemistry A, 2019, 7, 998-1004.	10.3	176
26	2D Semiconducting Metal–Organic Framework Thin Films for Organic Spin Valves. Angewandte Chemie - International Edition, 2020, 59, 1118-1123.	13.8	172
27	De Novo Design and Facile Synthesis of 2D Covalent Organic Frameworks: A Two-in-One Strategy. Journal of the American Chemical Society, 2019, 141, 13822-13828.	13.7	167
28	Porous Graphitic Carbon Nanosheets as a High-Rate Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9537-9545.	8.0	154
29	Maleimide–thiol adducts stabilized through stretching. Nature Chemistry, 2019, 11, 310-319.	13.6	154
30	Highly Efficient Activation of Molecular Oxygen with Nanoporous Metalloporphyrin Frameworks in Heterogeneous Systems. Advanced Materials, 2011, 23, 3149-3154.	21.0	151
31	Flexible Aqueous Lithiumâ€lon Battery with High Safety and Large Volumetric Energy Density. Angewandte Chemie - International Edition, 2016, 55, 7474-7477.	13.8	149
32	A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. ACS Nano, 2013, 7, 6489-6497.	14.6	141
33	Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon, 2017, 111, 839-848.	10.3	140
34	Conjugated Copper–Catecholate Framework Electrodes for Efficient Energy Storage. Angewandte Chemie - International Edition, 2020, 59, 1081-1086.	13.8	131
35	Tricycloquinazolineâ€Based 2D Conductive Metal–Organic Frameworks as Promising Electrocatalysts for CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 14473-14479.	13.8	130
36	Large pore donor–acceptor covalent organic frameworks. Chemical Science, 2013, 4, 4505.	7.4	127

#	Article	IF	CITATIONS
37	Nitrogen and Sulfur Self-Doped Activated Carbon Directly Derived from Elm Flower for High-Performance Supercapacitors. ACS Omega, 2018, 3, 4724-4732.	3.5	122
38	Inverse-vulcanization of vinyl functionalized covalent organic frameworks as efficient cathode materials for Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 17977-17981.	10.3	122
39	Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. Angewandte Chemie - International Edition, 2019, 58, 15742-15746.	13.8	121
40	<i>N</i> , <i>N</i> ,i>Nê²-Bicarbazole: A Versatile Building Block toward the Construction of Conjugated Porous Polymers for CO ₂ Capture and Dyes Adsorption. Macromolecules, 2017, 50, 4993-5003.	4.8	120
41	General synthesis of xLi2MnO3· $(1 \ \hat{a}^{\circ})$ x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. Journal of Materials Chemistry, 2012, 22, 25380.	6.7	115
42	Dioxetanes as Mechanoluminescent Probes in Thermoplastic Elastomers. Macromolecules, 2014, 47, 3797-3805.	4.8	112
43	Facile Synthesis of Porphyrin Based Covalent Organic Frameworks via an A ₂ B ₂ Monomer for Highly Efficient Heterogeneous Catalysis. Chemistry of Materials, 2019, 31, 8100-8105.	6.7	111
44	Integration of aggregation-induced emission and delayed fluorescence into electronic donor–acceptor conjugates. Journal of Materials Chemistry C, 2016, 4, 3705-3708.	5.5	107
45	Arylamineâ€Linked 2D Covalent Organic Frameworks for Efficient Pseudocapacitive Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 20754-20759.	13.8	107
46	Polyimide as anode electrode material for rechargeable sodium batteries. RSC Advances, 2014, 4, 25369-25373.	3.6	102
47	Covalent Organic Frameworks Constructed from Flexible Building Blocks with High Adsorption Capacity for Pollutants. ACS Applied Nano Materials, 2018, 1, 4756-4761.	5.0	95
48	Li ₂ TiSiO ₅ : a low potential and large capacity Ti-based anode material for Li-ion batteries. Energy and Environmental Science, 2017, 10, 1456-1464.	30.8	93
49	2D Conjugated Covalent Organic Frameworks: Defined Synthesis and Tailor-Made Functions. Accounts of Chemical Research, 2022, 55, 795-808.	15.6	91
50	Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chemical Society Reviews, 2021, 50, 11684-11714.	38.1	90
51	Donorâ€Acceptor Type Covalent Organic Frameworks. Chemistry - A European Journal, 2021, 27, 10781-10797.	3.3	90
52	Polyoxometalate built-in conjugated microporous polymers for visible-light heterogeneous photocatalysis. Journal of Materials Chemistry A, 2017, 5, 13757-13762.	10.3	89
53	Hexathienocoronenes: Synthesis and Self-Organization. Journal of the American Chemical Society, 2012, 134, 17869-17872.	13.7	88
54	Boosting the Potassium-Ion Storage Performance in Soft Carbon Anodes by the Synergistic Effect of Optimized Molten Salt Medium and N/S Dual-Doping. ACS Applied Materials & Diterfaces, 2020, 12, 20838-20848.	8.0	88

#	Article	IF	CITATIONS
55	Potassium gluconate-derived N/S Co-doped carbon nanosheets as superior electrode materials for supercapacitors and sodium-ion batteries. Journal of Power Sources, 2019, 414, 308-316.	7.8	87
56	Dendritic Effect on Supramolecular Self-Assembly: Organogels with Strong Fluorescence Emission Induced by Aggregation. Langmuir, 2009, 25, 8548-8555.	3.5	84
57	Ultrastable Covalent Organic Frameworks via Self-Polycondensation of an A ₂ B ₂ Monomer for Heterogeneous Photocatalysis. Macromolecules, 2019, 52, 7977-7983.	4.8	84
58	Binary Li ₄ Ti ₅ O ₁₂ â€Li ₂ Ti ₃ O ₇ Nanocomposite as an Anode Material for Liâ€lon Batteries. Advanced Functional Materials, 2013, 23, 640-647.	14.9	83
59	Exfoliated conjugated porous polymer nanosheets for highly efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 5787-5795.	10.3	81
60	Assembly and Fiber Formation of a Gemini-Type Hexathienocoronene Amphiphile for Electrical Conduction. Journal of the American Chemical Society, 2013, 135, 13531-13537.	13.7	80
61	Noncovalently Netted, Photoconductive Sheets with Extremely High Carrier Mobility and Conduction Anisotropy from Triphenylene-Fused Metal Trigon Conjugates. Journal of the American Chemical Society, 2009, 131, 7287-7292.	13.7	79
62	Dual-Functional Conjugated Nanoporous Polymers for Efficient Organic Pollutants Treatment in Water: A Synergistic Strategy of Adsorption and Photocatalysis. Macromolecules, 2018, 51, 3443-3449.	4.8	78
63	A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production. Nature Communications, 2018, 9, 438.	12.8	76
64	NiCo2S4 microspheres grown on N, S co-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting in alkaline and neutral pH. Nano Research, 2022, 15, 950-958.	10.4	75
65	Hierarchical Supramolecular Selfâ€Assembly of Nanotubes and Layered Sheets. Angewandte Chemie - International Edition, 2008, 47, 6015-6018.	13.8	72
66	Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solid-state supercapacitors. Carbon, 2020, 158, 456-464.	10.3	72
67	Achieving an unprecedented hydrogen evolution rate by solvent-exfoliated CPP-based photocatalysts. Journal of Materials Chemistry A, 2020, 8, 5890-5899.	10.3	72
68	High-voltage aqueous battery approaching 3 V using an acidic–alkaline double electrolyte. Chemical Communications, 2013, 49, 2204.	4.1	67
69	Polymorphism of 2D Imine Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 5363-5369.	13.8	67
70	Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, 17050-17057.	2.0	66
71	N-Rich 2D Heptazine Covalent Organic Frameworks as Efficient Metal-Free Photocatalysts. ACS Catalysis, 2022, 12, 616-623.	11.2	65
72	Solid-state emissive cyanostilbene based conjugated microporous polymers via cost-effective Knoevenagel polycondensation. Polymer Chemistry, 2016, 7, 3983-3988.	3.9	64

#	Article	IF	Citations
73	2D Redoxâ€Active Covalent Organic Frameworks for Supercapacitors: Design, Synthesis, and Challenges. Small, 2021, 17, e2005073.	10.0	64
74	Processable Rylene Diimide Dyes up to 4â€nm in Length: Synthesis and STM Visualization. Chemistry - A European Journal, 2013, 19, 11842-11846.	3.3	63
75	Skeleton Engineering of Isostructural 2D Covalent Organic Frameworks: Orthoquinone Redox-Active Sites Enhanced Energy Storage. CCS Chemistry, 2021, 3, 696-706.	7.8	62
76	Ferrocene-based porous organic polymer derived high-performance electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 22163-22169.	10.3	61
77	Bottomâ€Up Construction of Porous Organic Frameworks with Builtâ€In TEMPO as a Cathode for Lithium–Sulfur Batteries. ChemSusChem, 2017, 10, 2955-2961.	6.8	58
78	BrÃ, nsted acid mediated covalent organic framework membranes for efficient molecular separation. Journal of Materials Chemistry A, 2019, 7, 20317-20324.	10.3	58
79	EDOT-based conjugated polymers accessed <i>via</i> C–H direct arylation for efficient photocatalytic hydrogen production. Chemical Science, 2022, 13, 1725-1733.	7.4	58
80	Acid-Induced Multicolor Fluorescence of Pyridazine Derivative. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1237-1243.	8.0	57
81	Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	57
82	A four-fold interpenetrated metal–organic framework as a fluorescent sensor for volatile organic compounds. Dalton Transactions, 2016, 45, 14888-14892.	3.3	56
83	Phase-Locked Dynamic and Mechanoresponsive Bonds Design toward Robust and Mechanoluminescent Self-Healing Polyurethanes: A Microscopic View of Self-Healing Behaviors. Macromolecules, 2019, 52, 9376-9382.	4.8	56
84	TiP ₂ O ₇ and Expanded Graphite Nanocomposite as Anode Material for Aqueous Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8075-8082.	8.0	54
85	<i>In situ</i>) g-C ₃ N ₄ self-sacrificial synthesis of a g-C ₃ N ₄ /LaCO ₃ OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal. Journal of Materials Chemistry A, 2018, 6, 972-981.	10.3	54
86	Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. Journal of the American Chemical Society, 2022, 144, 5042-5050.	13.7	54
87	Nickel Glyoximate Based Metal–Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	54
88	Three-Dimensional Honeycomb-Like Porous Carbon with Both Interconnected Hierarchical Porosity and Nitrogen Self-Doping from Cotton Seed Husk for Supercapacitor Electrode. Nanomaterials, 2018, 8, 412.	4.1	52
89	ZnFe ₂ O ₄ Nanoparticles for Electrochemical Determination of Trace Hg(II), Pb(II), Cu(II), and Glucose. ACS Applied Nano Materials, 2021, 4, 4026-4036.	5.0	48
90	Facile Transformation of Perylene Tetracarboxylic Acid Dianhydride into Strong Donor–Acceptor Chromophores. Organic Letters, 2012, 14, 5444-5447.	4.6	47

#	Article	IF	Citations
91	Targeted Construction of Light-Harvesting Metal–Organic Frameworks Featuring Efficient Host–Guest Energy Transfer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5633-5640.	8.0	47
92	Donor-acceptor 2D covalent organic frameworks for efficient heterogeneous photocatalytic α-oxyamination. Science China Chemistry, 2021, 64, 827-833.	8.2	46
93	One-step synthesis of nickel–iron layered double hydroxides with tungstate acid anions ⟨i⟩via⟨ i⟩ flash nano-precipitation for the oxygen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 237-244.	4.9	45
94	5,6,12,13â€Tetraazaperopyrenes as Unique Photonic and Mechanochromic Fluorophores. Angewandte Chemie - International Edition, 2020, 59, 9940-9945.	13.8	45
95	2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 5672-5684.	2.0	45
96	Optical Waveguides in Organic Crystals of Polycyclic Arenes. Advanced Optical Materials, 2021, 9, 2002264.	7.3	45
97	Forced To Align: Flow-Induced Long-Range Alignment of Hierarchical Molecular Assemblies from 2D to 3D. Journal of the American Chemical Society, 2014, 136, 4117-4120.	13.7	44
98	Highâ€Voltage Rechargeable Alkali–Acid Zn–PbO ₂ Hybrid Battery. Angewandte Chemie - International Edition, 2020, 59, 23593-23597.	13.8	44
99	2D covalent organic framework thin films <i>via</i> interfacial self-polycondensation of an A ₂ B ₂ type monomer. Chemical Communications, 2020, 56, 3253-3256.	4.1	43
100	Contorted polycyclic aromatic hydrocarbons with cove regions and zig-zag edges. Chemical Communications, 2017, 53, 8474-8477.	4.1	42
101	<i>N</i> , <i>N</i> ê≥²-Bicarbazole-Based Covalent Triazine Frameworks as High-Performance Heterogeneous Photocatalysts. Macromolecules, 2019, 52, 9786-9791.	4.8	42
102	From S,Nâ€Heteroacene to Large Discotic Polycyclic Aromatic Hydrocarbons (PAHs): Liquid Crystal versus Plastic Crystalline Materials with Tunable Mechanochromic Fluorescence. Angewandte Chemie - International Edition, 2018, 57, 6161-6165.	13.8	41
103	Aqueous Lithium-Ion Batteries Using Polyimide-Activated Carbon Composites Anode and Spinel LiMn ₂ O ₄ Cathode. ACS Sustainable Chemistry and Engineering, 2017, 5, 1503-1508.	6.7	40
104	Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity. Scientific Reports, 2016, 6, 32944.	3.3	39
105	Facile one-step fabrication of CdS _{0.12} Se _{0.88} quantum dots with a ZnSe/ZnS-passivation layer for highly efficient quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 9866-9873.	10.3	38
106	2D covalent organic frameworks with built-in amide active sites for efficient heterogeneous catalysis. Chemical Communications, 2019, 55, 14538-14541.	4.1	38
107	Docking Site Modulation of Isostructural Covalent Organic Frameworks for CO ₂ Fixation. Chemistry - A European Journal, 2020, 26, 4510-4514.	3.3	37
108	Hierarchical Supramolecular Assembly of Sterically Demanding Ï€â€Systems by Conjugation with Oligoprolines. Angewandte Chemie - International Edition, 2014, 53, 12537-12541.	13.8	36

#	Article	IF	CITATIONS
109	Tuning the Mechanochromic Luminescence of BOPIM Complexes by Rational Introduction of Aromatic Substituents. Journal of Physical Chemistry C, 2017, 121, 27009-27017.	3.1	36
110	Improving Mechanoluminescent Sensitivity of 1,2-Dioxetane-Containing Thermoplastic Polyurethanes by Controlling Energy Transfer across Polymer Chains. Macromolecules, 2018, 51, 9019-9025.	4.8	36
111	2D conductive metal-organic frameworks for electronics and spintronics. Science China Chemistry, 2020, 63, 1391-1401.	8.2	35
112	2D Covalent Organic Frameworks Toward Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2022, 15, .	6.8	35
113	A Redoxâ€Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angewandte Chemie, 2020, 132, 5311-5315.	2.0	34
114	Synthesis of Fully Soluble Azomethine-Bridged Ladder-Type Poly(<i>p</i> -phenylenes) by Bischlerâ^'Napieralski Reaction. Macromolecules, 2010, 43, 10216-10220.	4.8	33
115	Facile construction of butadiynylene based conjugated porous polymers by cost-effective Glaser coupling. Materials Chemistry Frontiers, 2017, 1, 867-872.	5.9	33
116	Layered Electron Acceptors by Dimerization of Acenes End―Capped with 1,2,5â€Thiadiazoles. Angewandte Chemie - International Edition, 2016, 55, 941-944.	13.8	32
117	Nitroxyl radical based conjugated microporous polymers as heterogeneous catalysts for selective aerobic alcohol oxidation. Journal of Materials Chemistry A, 2018, 6, 9860-9865.	10.3	32
118	Enhanced optomechanical properties of mechanochemiluminescent poly(methyl acrylate) composites with granulated fluorescent conjugated microporous polymer fillers. Chemical Science, 2019, 10, 2206-2211.	7.4	32
119	Green Emitting Photoproducts from Terrylene Diimide after Red Illumination. Journal of the American Chemical Society, 2013, 135, 19180-19185.	13.7	31
120	Flow-Assisted 2D Polymorph Selection: Stabilizing Metastable Monolayers at the Liquid–Solid Interface. Journal of the American Chemical Society, 2014, 136, 7595-7598.	13.7	31
121	Empowering self-reporting polymer blends with orthogonal optical properties responsive in a broader force range. Chemical Science, 2021, 12, 1245-1250.	7.4	31
122	A fishing rod-like conjugated polymer bearing pillar[5]arenes. Chemical Communications, 2016, 52, 6662-6664.	4.1	30
123	2D Semiconducting Metal–Organic Framework Thin Films for Organic Spin Valves. Angewandte Chemie, 2020, 132, 1134-1139.	2.0	30
124	Sulfonated 2D Covalent Organic Frameworks for Efficient Proton Conduction. Chemistry - A European Journal, 2021, 27, 3817-3822.	3.3	30
125	Recent advances in mechanoluminescent polymers. Science China Materials, 2016, 59, 507-520.	6.3	29
126	From Tetraphenylfurans to Ringâ€Opened (<i>Z</i>)â€1,4â€Enediones: ACQ Fluorophores versus AlEgens with Distinct Responses to Mechanical Force and Light. Chemistry - A European Journal, 2018, 24, 13197-13204.	3.3	29

#	Article	IF	CITATIONS
127	Dual-responsive BN-embedded phenacenes featuring mechanochromic luminescence and ratiometric sensing of fluoride ions. Journal of Materials Chemistry C, 2018, 6, 10456-10463.	5.5	29
128	A Crown Ether Decorated Dibenzocoronene Tetracarboxdiimide Chromophore: Synthesis, Sensing, and Selfâ€Organization. Chemistry - an Asian Journal, 2015, 10, 139-143.	3.3	28
129	Base–acid hybrid water electrolysis. Chemical Communications, 2016, 52, 3147-3150.	4.1	28
130	Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. RSC Advances, 2015, 5, 50063-50069.	3.6	27
131	A novel angularly fused bistetracene: facile synthesis, crystal packing and single-crystal field effect transistors. Journal of Materials Chemistry C, 2017, 5, 1308-1312.	5.5	27
132	Self-assembly of cationic pyrene nanotubes. Journal of Materials Chemistry, 2012, 22, 4927.	6.7	26
133	Synthesis and electrocatalytic mechanism of ultrafine MFe ₂ O ₄ (M: Co, Ni, and) Tj ETQq and hydrogen evolution reaction performances. Journal of Materials Chemistry A, 2021, 9, 22277-22290.	1 1 0.784 10.3	314 rgBT /C 26
134	Tuning the Photophysical Properties of Symmetric Squarylium Dyes: Investigation on the Halogen Modulation Effects. Chemistry - A European Journal, 2019, 25, 469-473.	3.3	25
135	Visualized Bond Scission in Mechanochemiluminescent Polymethyl Acrylate/Cellulose Nanocrystals Composites. ACS Macro Letters, 2020, 9, 438-442.	4.8	25
136	An In Situ Film-to-Film Transformation Approach toward Highly Crystalline Covalent Organic Framework Films. CCS Chemistry, 2022, 4, 1519-1525.	7.8	25
137	Facile Synthesis of 3,8-Dibromo-Substituted Phenanthridine Derivatives and Their Conjugated Polymers. Macromolecules, 2010, 43, 1349-1355.	4.8	24
138	Synthesis, Characterization, and Properties of Diazapyrenes via Bischler–Napieralski Reaction. Journal of Organic Chemistry, 2019, 84, 3953-3959.	3.2	24
139	Sensitized Mechanoluminescence Design toward Mechanically Induced Intense Red Emission from Transparent Polymer Films. Macromolecules, 2020, 53, 905-912.	4.8	24
140	Substrate-Modulated Synthesis of Metal–Organic Hybrids by Tunable Multiple Aryl–Metal Bonds. Journal of the American Chemical Society, 2022, 144, 8214-8222.	13.7	24
141	Discotic hexa-peri-hexabenzocoronenes with strong dipole: synthesis, self-assembly and dynamic studies. Chemical Communications, 2012, 48, 702-704.	4.1	23
142	Enhanced Mechanochemiluminescence from End-Functionalized Polyurethanes with Multiple Hydrogen Bonds. Macromolecules, 2021, 54, 1557-1563.	4.8	23
143	Thiophene-Fused 1,10-Phenanthroline and Its Conjugated Polymers. Macromolecules, 2016, 49, 4088-4094.	4.8	22
144	Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. Angewandte Chemie, 2019, 131, 15889-15893.	2.0	22

#	Article	IF	Citations
145	An Upgraded "Twoâ€inâ€One―Strategy toward Highly Crystalline Covalent Organic Frameworks. Chemistry - A European Journal, 2020, 26, 8377-8381.	3.3	22
146	Single-molecule field effect and conductance switching driven by electric field and proton transfer. Science Advances, 2022, 8, eabm3541.	10.3	22
147	Competition between HO ₂ and H ₂ O ₂ Reactions with CH ₂ OO/ <i>anti</i> Perspective. Journal of Physical Chemistry A, 2017, 121, 6981-6991.	2.5	21
148	<i>S</i> , <i>N</i> -Heteroacene-Based Conjugated Microporous Polymers as Fluorescent Sensors and Effective Antimicrobial Carriers. ACS Applied Bio Materials, 2018, 1, 473-479.	4.6	21
149	Rational design of two-dimensional covalent tilings using a C6-symmetric building block via on-surface Schiff base reaction. Chemical Communications, 2019, 55, 1326-1329.	4.1	21
150	Flexible Aqueous Lithiumâ€Ion Battery with High Safety and Large Volumetric Energy Density. Angewandte Chemie, 2016, 128, 7600-7603.	2.0	20
151	<i>p</i> â€Quaterphenylene as an Aggregationâ€Induced Emission Fluorogen in Supramolecular Organogels and Fluorescent Sensors. Chemistry - an Asian Journal, 2017, 12, 52-59.	3.3	20
152	Synthesis of Co2 \hat{a} °xNixO2 (0 < x < 1.0) hexagonal nanostructures as efficient bifunctional electrocatalysts for overall water splitting. Dalton Transactions, 2020, 49, 6587-6595.	3.3	20
153	An optomechanical study of mechanoluminescent elastomeric polyurethanes with different hard segments. Polymer Chemistry, 2020, 11, 1877-1884.	3.9	20
154	A Chromic and Nearâ€Infrared Emissive Mechanophore Serving as a Versatile Force Meter in Micelle–Hydrogel Composites. Advanced Optical Materials, 2022, 10, .	7.3	20
155	Photolysis of polymeric self-assembly controlled by donor–acceptor interaction. Chemical Communications, 2017, 53, 11822-11825.	4.1	19
156	Porous Organic Polymer Gel Derived Electrocatalysts for Efficient Oxygen Reduction. ChemElectroChem, 2019, 6, 485-492.	3.4	19
157	Topology modulation of 2D covalent organic frameworks <i>via</i> a "two-in-one―strategy. Nanoscale, 2021, 13, 19385-19390.	5.6	19
158	ZnS modified N, S dual-doped interconnected porous carbon derived from dye sludge waste as high-efficient ORR/OER catalyst for rechargeable zinc-air battery. Journal of Colloid and Interface Science, 2022, 616, 659-667.	9.4	19
159	Synthesis of thiophene-containing conjugated polymers from 2,5-thiophenebis(boronic ester)s by Suzuki polycondensation. Polymer Chemistry, 2013, 4, 895.	3.9	18
160	Structural Insights Into 9â€Styrylanthraceneâ€Based Luminophores: Geometry Control Versus Mechanofluorochromism and Sensing Properties. Chemistry - an Asian Journal, 2017, 12, 830-834.	3.3	18
161	Thermo- and pH-responsive starch derivatives for smart window. Carbohydrate Polymers, 2018, 196, 209-216.	10.2	18
162	Diselenide-Linked Polymers under Sonication. ACS Macro Letters, 2020, 9, 1547-1551.	4.8	18

#	Article	IF	Citations
163	Efficient separation between trivalent americium and lanthanides enabled by a phenanthroline-based polymeric organic framework. Chinese Chemical Letters, 2022, 33, 3429-3434.	9.0	18
164	Metallosalphen-Based 2D Covalent Organic Frameworks with an Unprecedented tju Topology via K-Shaped Two-in-One Monomers. Chemistry of Materials, 2022, 34, 5888-5895.	6.7	18
165	Polymorphism of 2D Imine Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 5423-5429.	2.0	17
166	Tailoring Pore Structure and Morphologies in Covalent Organic Frameworks for Xe/Kr Capture and Separation. Chemical Research in Chinese Universities, 2021, 37, 679-685.	2.6	17
167	EEG-controlled functional electrical stimulation rehabilitation for chronic stroke: system design and clinical application. Frontiers of Medicine, 2021, 15, 740-749.	3.4	17
168	Evaluation of renewable pH-responsive starch-based flocculant on treating and recycling of highly saline textile effluents. Environmental Research, 2021, 201, 111489.	7.5	17
169	Versatile Colorant Syntheses by Multiple Condensations of Acetyl Anilines with Perylene Anhydrides. Angewandte Chemie - International Edition, 2015, 54, 2285-2289.	13.8	16
170	Selfâ€Assembly of Azobenzene Derivatives into Organogels and Photoresponsive Liquid Crystals. Chemistry - an Asian Journal, 2018, 13, 1173-1179.	3.3	16
171	A New Biscarbazoleâ€Based Metal–Organic Framework for Efficient Host–Guest Energy Transfer. Chemistry - A European Journal, 2019, 25, 1901-1905.	3.3	16
172	Highâ€Voltage Rechargeable Alkali–Acid Zn–PbO ₂ Hybrid Battery. Angewandte Chemie, 2020, 132, 23799-23803.	2.0	16
173	Molten salt method synthesis of multivalent cobalt and oxygen vacancy modified Nitrogen-doped MXene as highly efficient hydrogen and oxygen Evolution reaction electrocatalysts. Journal of Colloid and Interface Science, 2022, 615, 831-839.	9.4	16
174	Layered Electron Acceptors by Dimerization of Acenes End―Capped with 1,2,5â€Thiadiazoles. Angewandte Chemie, 2016, 128, 953-956.	2.0	15
175	Thiophene-fused 1,10-phenanthroline toward a far-red emitting conjugated polymer and its polymer dots: synthesis, properties and subcellular imaging. Materials Chemistry Frontiers, 2017, 1, 2638-2642.	5.9	15
176	Cu-Doped Porous Carbon Derived from Heavy Metal-Contaminated Sewage Sludge for High-Performance Supercapacitor Electrode Materials. Nanomaterials, 2019, 9, 892.	4.1	15
177	Conjugated Copper–Catecholate Framework Electrodes for Efficient Energy Storage. Angewandte Chemie, 2020, 132, 1097-1102.	2.0	15
178	Substrate-Controlled Synthesis of 5-Armchair Graphene Nanoribbons. Journal of Physical Chemistry C, 2020, 124, 11422-11427.	3.1	15
179	New Strategies for the Synthesis of Covalent Organic Porous Polymers. Acta Chimica Sinica, 2015, 73, 487.	1.4	15
180	(Z)-Tetraphenylbut-2-ene-1,4-diones: facile synthesis, tunable aggregation-induced emission and fluorescence acid sensing. Journal of Materials Chemistry C, 2017, 5, 3408-3414.	5.5	14

#	Article	IF	Citations
181	Remotely Photocontrolled Microrobots based on Photomechanical Molecular Crystals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27493-27498.	8.0	14
182	Amphiphilic Diazapyrenes with Multiple Stimuli-Responsive Properties. ACS Applied Materials & Interfaces, 2021, 13, 20698-20707.	8.0	14
183	Quinacridone based 2D covalent organic frameworks as efficient photocatalysts for aerobic oxidative Povarov reaction. Applied Catalysis B: Environmental, 2022, 312, 121406.	20.2	14
184	Nickel Glyoximate Based Metal–Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	14
185	Polythiophenes with Carbazole Side Chains: Design, Synthesis and Their Application in Organic Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 948-955.	2.2	13
186	Incorporation of Multiple-Days Information to Improve the Generalization of EEG-Based Emotion Recognition Over Time. Frontiers in Human Neuroscience, 2018, 12, 267.	2.0	13
187	Aggregation-Dependent Photoreactive Hemicyanine Assembly as a Photobactericide. ACS Applied Materials & Department of the Materials & Department & Department & Department & Department &	8.0	13
188	Arylamineâ€Linked 2D Covalent Organic Frameworks for Efficient Pseudocapacitive Energy Storage. Angewandte Chemie, 2021, 133, 20922-20927.	2.0	13
189	Onâ€Surface Synthesis of a Nitrogenâ€Doped Graphene Nanoribbon with Multiple Substitutional Sites. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
190	Effect of sintering temperature on microstructure and electrical properties of Mn1.2Co1.5Ni0.3O4 ceramic materials using nanoparticles by reverse microemulsion method. Journal of Materials Science: Materials in Electronics, 2016, 27, 1713-1718.	2.2	12
191	The effect of substituent number on mechanochromic luminescence of \hat{l}^2 -diketones and the corresponding boron complexes. Dyes and Pigments, 2019, 166, 159-167.	3.7	12
192	Polyurethane/Siloxane Hybrid Polymers with Chemiluminescent Mechanophores as Stress Probes. Macromolecular Materials and Engineering, 2019, 304, 1900056.	3.6	12
193	N-doped Carbon Coated CoO Nanowire Arrays Derived from Zeolitic Imidazolate Framework-67 as Binder-free Anodes for High-performance Lithium Storage. Scientific Reports, 2019, 9, 5934.	3.3	12
194	<scp>Oneâ€Pot</scp> Synthesis of 3―to <scp>15â€Mer Ï€â€Conjugated</scp> Discrete Oligomers with Widely Tunable Optical Properties. Chinese Journal of Chemistry, 2021, 39, 577-584.	¹ 4.9	12
195	Covalently Cross-Linked and Mechanochemiluminescent Polyolefins Capable of Self-Healing and Self-Reporting. CCS Chemistry, 2021, 3, 1316-1324.	7.8	12
196	Tricycloquinazolineâ€Based 2D Conductive Metal–Organic Frameworks as Promising Electrocatalysts for CO 2 Reduction. Angewandte Chemie, 2021, 133, 14594-14600.	2.0	12
197	Triangular Topological 2D Covalent Organic Frameworks Constructed via Symmetric a€œTwoâ€inâ€One―Type Monomers. Advanced Science, 2022, 9, e2105517.	11.2	12
198	The non-covalent assembly of benzene-bridged metallosalphen dimers: photoconductive tapes with large carrier mobility and spatially distinctive conduction anisotropy. Chemical Communications, 2009, , 3119.	4.1	11

#	Article	IF	CITATIONS
199	Synthesis and Supramolecular Selfâ€Assembly of Coilâ€Rodâ€Coil Molecules: The Relationship between Selfâ€Assembled Nanostructures and Molecular Structures. Chemistry - an Asian Journal, 2011, 6, 226-233.	3.3	11
200	Conjugated Polymerâ€Based Nanoparticles for Cancer Cellâ€Targeted and Imageâ€Guided Photodynamic Therapy. Macromolecular Chemistry and Physics, 2018, 219, 1700440.	2.2	11
201	Novel n-channel organic semiconductor based on pyrene-phenazine fused monoimide and bisimides. Chinese Chemical Letters, 2018, 29, 331-335.	9.0	11
202	Controlled Formation of a Main Chain Supramolecular Polymer Based on Metal–Ligand Interactions and a Thiolâ€Ene Click Reaction. Chemistry - an Asian Journal, 2018, 13, 3169-3172.	3.3	11
203	Facile synthesis of 3D covalent organic frameworks <i>via</i> a two-in-one strategy. Chemical Communications, 2021, 57, 2136-2139.	4.1	11
204	<i>In situ</i> Câ€"H activation-derived polymer@TiO ₂ pâ€"n heterojunction for photocatalytic hydrogen evolution. Sustainable Energy and Fuels, 2021, 5, 5166-5174.	4.9	11
205	Pyrrole-Based Conjugated Microporous Polymers as Efficient Heterogeneous Catalysts for Knoevenagel Condensation. Frontiers in Chemistry, 2021, 9, 687183.	3.6	11
206	Crystalline-Amorphous Hybrid CoNiO ₂ Nanowires with Enhanced Capacity and Energy Density for Aqueous Zinc-Ion Hybrid Supercapacitors. ACS Applied Energy Materials, 2021, 4, 12345-12352.	5.1	11
207	3D Cross-linked Ti3C2Tx-Ca-SA films with expanded Ti3C2Tx interlayer spacing as freestanding electrode for all-solid-state flexible pseudocapacitor. Journal of Colloid and Interface Science, 2022, 610, 295-303.	9.4	11
208	Hybrid-metal hydroxyl fluoride nanosheet arrays as a bifunctional electrocatalyst for efficient overall water splitting. Journal of Materials Chemistry A, 2022, 10, 11774-11783.	10.3	11
209	Synthesis and self-assembly of unconventional $<$ i>C $<$ /i> $<$ sub>3 $<$ /sub>-symmetrical trisubstituted triphenylenes. Materials Chemistry Frontiers, 2017, 1, 2599-2605.	5.9	10
210	Flocculant-Assisted Synthesis of Graphene-Like Carbon Nanosheets for Oxygen Reduction Reaction and Supercapacitor. Nanomaterials, 2019, 9, 1135.	4.1	10
211	Bischlerâ€Napieralski Cyclization: A Versatile Reaction towards Functional Azaâ€PAHs and Their Conjugated Polymers â€. Chinese Journal of Chemistry, 2021, 39, 3101.	4.9	10
212	Cobalt sandwich complex-based covalent organic frameworks for chemical fixation of CO2. Science China Materials, 2022, 65, 1377-1382.	6.3	10
213	Nanoscale Gd ₂ O ₂ S:Tb Scintillators for High-Resolution Fluorescent Imaging of Cold Neutrons. ACS Applied Nano Materials, 2022, 5, 8440-8447.	5.0	10
214	Stable 2D Bisthienoacenes: Synthesis, Crystal Packing, and Photophysical Properties. Chemistry - A European Journal, 2018, 24, 14442-14447.	3.3	9
215	5,6,12,13â€√etraazaperopyrenes as Unique Photonic and Mechanochromic Fluorophores. Angewandte Chemie, 2020, 132, 10026-10031.	2.0	9
216	In Situ Formation of NiAl-Layered Double Hydroxide with a Tunable Interlayer Spacing in a Confined Impinging Jet Microreactor. Energy & Energy & 2020, 34, 8939-8946.	5.1	9

#	Article	IF	Citations
217	Semiâ€IPNs Reinforced with Silica Janus Nanoparticles and Their Stress Sensing with Mechanoluminescent Probe. Macromolecular Rapid Communications, 2021, 42, 2000442.	3.9	9
218	Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production. Beilstein Journal of Nanotechnology, 2021, 12, 607-623.	2.8	9
219	Direct pore engineering of 2D imine covalent organic frameworks via sub-stoichiometric synthesis. Science China Chemistry, 2022, 65, 190-196.	8.2	9
220	Mechanochromic luminescence from N,O-Chelated diphenylborinates. Dyes and Pigments, 2021, 193, 109484.	3.7	9
221	Unraveling Ultrasonic Stress Response of Nanovesicles by the Mechanochromism of Self-Assembled Polydiacetylene. ACS Macro Letters, 2022, 11, 103-109.	4.8	9
222	Photophysical Investigation of Cyano-Substituted Terrylenediimide Derivatives. Journal of Physical Chemistry B, 2014, 118, 14662-14674.	2.6	8
223	Amphiphilic dendrons with a pyrene functional group at the focal point: synthesis, self-assembly and generation-dependent DNA condensation. Polymer Chemistry, 2017, 8, 4798-4804.	3.9	8
224	Mechanochromic Polymers. Macromolecular Rapid Communications, 2021, 42, e2000685.	3.9	8
225	Preparation and characterization of LaMn0.5Co0.5O3–Ni0.66Mn2.34O4 composite NTC ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 7560-7565.	2.2	7
226	Fabrication and thermosensitive characteristics of BaCoO3â^Î ceramics for low temperature negative temperature coefficient thermistor. Journal of Materials Science: Materials in Electronics, 2017, 28, 6239-6244.	2.2	7
227	A cellulose dissolution and encapsulation strategy to prepare carbon nanospheres with ultra-small size and high nitrogen content for the oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 10613-10620.	2.8	7
228	Study on the fluorescence properties of micron-submicron-nano BaFBr:Eu2+ phosphors. New Journal of Chemistry, 2020, 44, 13118-13124.	2.8	7
229	Mechanically Induced Bright Luminescence from 1,2â€Dioxetane Containing PDMS Boosted by Fluoroboron Complex as an Inâ€Chain Fluorophore. Macromolecular Rapid Communications, 2021, 42, e2000575.	3.9	7
230	Salt-Templated Nanoarchitectonics of CoSe2-NC Nanosheets as an Efficient Bifunctional Oxygen Electrocatalyst for Water Splitting. International Journal of Molecular Sciences, 2022, 23, 5239.	4.1	7
231	From S,Nâ€Heteroacene to Large Discotic Polycyclic Aromatic Hydrocarbons (PAHs): Liquid Crystal versus Plastic Crystalline Materials with Tunable Mechanochromic Fluorescence. Angewandte Chemie, 2018, 130, 6269-6273.	2.0	6
232	Fluorescent BF ₂ complexes of pyridyl-isoindoline-1-ones: synthesis, characterization and their distinct response to mechanical force. Dalton Transactions, 2019, 48, 14626-14631.	3.3	6
233	Designed synthesis of ZnO/PEDOT core/shell hybrid nanotube arrays with enhanced electrochromic properties. Surface and Interface Analysis, 2020, 52, 389-395.	1.8	6
234	Circularly Polarized Luminescence from Chiral <scp><i>p</i>pê√erphenyleneâ€Based</scp> Supramolecular Aggregates. Chinese Journal of Chemistry, 2021, 39, 2095-2100.	4.9	6

#	Article	IF	Citations
235	Optimization of Task Allocation for Collaborative Brain–Computer Interface Based on Motor Imagery. Frontiers in Neuroscience, 2021, 15, 683784.	2.8	6
236	Mechanochemiluminescent Hydrogels for Real-Time Visualization of Chemical Bond Scission. Synlett, 2022, 33, 879-884.	1.8	6
237	Effects of inter-stimulus intervals on concurrent P300 and SSVEP features for hybrid brain-computer interfaces. Journal of Neuroscience Methods, 2022, 372, 109535.	2.5	6
238	Incorporating EEG and EMG Patterns to Evaluate BCI-Based Long-Term Motor Training. IEEE Transactions on Human-Machine Systems, 2022, 52, 648-657.	3.5	6
239	A three-dimensional polycyclic aromatic hydrocarbon based covalent organic framework doped with iodine for electrical conduction. Chinese Chemical Letters, 2023, 34, 107454.	9.0	6
240	Heterogeneous photocatalytic borylation of aryl iodides mediated by isoreticular 2D covalent organic frameworks. Chinese Chemical Letters, 2023, 34, 107584.	9.0	6
241	Fused Carbazoleâ€Based Dyads: Synthesis, Solvatochromism and Sensing Properties. Asian Journal of Organic Chemistry, 2018, 7, 2223-2227.	2.7	5
242	Catalytic effect of (H2O)n (n = 1–3) clusters on the HO2 + SO2 → HOSO + 3O2 reaction under tropospheric conditions. RSC Advances, 2019, 9, 16195-16207.	3.6	5
243	Fast and facile preparation of S nanoparticles by flash nanoprecipitation for lithium–sulfur batteries. New Journal of Chemistry, 2020, 44, 466-471.	2.8	5
244	A donor–acceptor type macrocycle: toward photolyzable self-assembly. Chemical Communications, 2020, 56, 3939-3942.	4.1	5
245	Snapshots of Lifeâ€"Early Career Materials Scientists Managing in the Midst of a Pandemic. Chemistry of Materials, 2020, 32, 3673-3677.	6.7	5
246	Diazocine as a Versatile Building Block Enables Excellent Photoswitching and Chromic Properties in Self-Assembled Organogels. CCS Chemistry, 2022, 4, 704-712.	7.8	5
247	Thermal- and Light-driven Metathesis Reactions Between Different Diselenides. Chemical Research in Chinese Universities, 2022, 38, 516-521.	2.6	5
248	Linkages take charge. , 2022, 1, 341-343.		5
249	Synthesis of (±)â€Bakuchiol via a Potâ€Economy Approach. Chinese Journal of Chemistry, 2014, 32, 715-720.	4.9	4
250	A transplantation of subject-independent model in cross-platform BCI. International Journal of Machine Learning and Cybernetics, 2018, 9, 959-967.	3.6	4
251	Preparation of mesoporous CoNiO2 hexagonal nanoparticles for asymmetric supercapacitors via a hydrothermal microwave carbon bath process. New Journal of Chemistry, 2019, 43, 15066-15071.	2.8	4
252	N, S Dual-Doped Carbon Derived from Dye Sludge by Using Polymeric Flocculant as Soft Template. Nanomaterials, 2019, 9, 991.	4.1	4

#	Article	IF	Citations
253	Performance Improvement for Detecting Brain Function Using fNIRS: A Multi-Distance Probe Configuration With PPL Method. Frontiers in Human Neuroscience, 2020, 14, 569508.	2.0	4
254	Mechanically Robust and Broadband Blackbody Composite Films Based on Selfâ€Assembled Layered Structures. Chemistry - an Asian Journal, 2020, 15, 1436-1439.	3.3	4
255	Negative-tone molecular glass photoresist for high-resolution electron beam lithography. Royal Society Open Science, 2021, 8, 202132.	2.4	4
256	Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angewandte Chemie, 0, , .	2.0	4
257	Size-Dependent Nonlinear Optical Properties of Gd2O2S:Tb3+ Scintillators and Their Doped Gel Glasses. Molecules, 2022, 27, 85.	3.8	4
258	Nitrogen self-doped porous carbon nanosheets derived from azo dye flocs for efficient supercapacitor electrodes. Carbon Letters, 2019, 29, 455-460.	5.9	3
259	Bioinformatics analysis of Myelin Transcription Factor 1. Technology and Health Care, 2021, 29, 441-453.	1.2	3
260	Developing real-time mechanochromic probes for polymeric materials. CheM, 2021, 7, 838-840.	11.7	3
261	Columnar Liquid Crystalline Corannulenes: Synthesis, Assembly and Charge arrier Transport Properties. Chinese Journal of Chemistry, 2021, 39, 2354-2358.	4.9	3
262	Supramolecular Polymerization of C3-Symmetric, Triphenylene-Cored Aza-Polycyclic Aromatic Hydrocarbons with Excellent and Switchable Circularly Polarized Luminescence Performance. Macromolecules, 2021, 54, 7291-7297.	4.8	3
263	Regeneration and reuse of salt-tolerant zwitterionic polymer fluids by simple salt/water system. Journal of Hazardous Materials, 2022, 427, 128203.	12.4	3
264	Visualization of Solventâ€Induced Structure Evolution in Cyclodextrin Polyrotaxane Gels. Macromolecular Rapid Communications, 2022, 43, e2200082.	3.9	3
265	Flexible Broadband Light Absorbers with a Superhydrophobic Surface Fabricated by Ultraviolet-assisted Nanoimprint Lithography. Chemical Research in Chinese Universities, 2022, 38, 829-833.	2.6	3
266	Starâ€Shaped Cyanostilbeneâ€Based Dyads: Synthesis, Selfâ€Assembly and Photophysical Properties. ChemNanoMat, 2018, 4, 785-789.	2.8	2
267	The Feasibility of Longitudinal Upper Extremity Motor Function Assessment Using EEG. Sensors, 2020, 20, 5487.	3.8	2
268	Proton transport in crystalline, porous covalent organic frameworks: a NMR study. Journal of Materials Chemistry A, 2020, 8, 20939-20945.	10.3	2
269	"Magnetismâ€Optogenetic―System for Wireless and Highly Sensitive Neuromodulation. Advanced Healthcare Materials, 2022, 11, 2102023.	7.6	2
270	Frontispiece: Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, .	13.8	1

#	Article	IF	CITATIONS
271	Integrating EEG and NIRS improves BCI performance during motor imagery**Research supported by the National Key Research and Development Program of China under grant 2017YFB1300302, National Natural Science Foundation of China (No. 81630051, 81925020, 62006171), and Tianjin Key Technology R&D Program (No. 17ZXRGGX00020), 2021,		1
272	Ultrathin 2D Covalent Organic Framework Film Fabricated via Langmuir-Blodgett Method with a "Two-in-One―Type Monomer. Chemical Research in Chinese Universities, 2022, 38, 440-445.	2.6	1
273	One-pot synthesis of CoxSy nanomaterials for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2022, 33, 10013-10020.	2.2	1
274	Rýcktitelbild: Vielseitige Farbstoffsynthesen durch mehrfache Kondensationsreaktionen von Acetylanilinen mit Perylenanhydriden (Angew. Chem. 7/2015). Angewandte Chemie, 2015, 127, 2322-2322.	2.0	0
275	Innentitelbild: Conjugated Copper–Catecholate Framework Electrodes for Efficient Energy Storage (Angew. Chem. 3/2020). Angewandte Chemie, 2020, 132, 974-974.	2.0	0
276	Continuous Surface Strain Tuning for NiFe-Layered Double Hydroxides Using a Multi-inlet Vortex Mixer. Industrial & Double Hydroxides Using a Multi-inlet Vortex Mixer. Industrial & Double Hydroxides Using a Multi-inlet Vortex Mixer. Industrial & Double Hydroxides Using a Multi-inlet Vortex Mixer. Industrial & Double Hydroxides Using a Multi-inlet Vortex Mixer Double Hydroxides Using a Mixer Double Hydroxides Using Alberta Double Hydroxides	3.7	0
277	Frontispiz: Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, .	2.0	0
278	Titelbild: A Redoxâ€Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity (Angew. Chem. 13/2020). Angewandte Chemie, 2020, 132, 5005-5005.	2.0	0
279	Author Spotlight. CCS Chemistry, 2021, 3, 303-305.	7.8	O
280	The effects evaluation of a long-term neurofeedback training using coupling EEG-EMG features**Research supported by the National Key Research and Development Program of China under grant 2017YFB1300302, National Natural Science Foundation of China (No. 81630051, 81925020, 62006171), and Tianjin Key Technology R&D Program (No. 17ZXRGGX00020), 2021, , .		o
281	Rücktitelbild: Tricycloquinazolineâ€Based 2D Conductive Metal–Organic Frameworks as Promising Electrocatalysts for CO ₂ Reduction (Angew. Chem. 26/2021). Angewandte Chemie, 2021, 133, 14840-14840.	2.0	0
282	Frontispiece: Donorâ€Acceptor Type Covalent Organic Frameworks. Chemistry - A European Journal, 2021, 27, .	3.3	0
283	A Novel Bci Paradigm Combining Visual Imagery and Emotion: A Pilot Study. , 2021, , .		O
284	Onâ€surface Synthesis of Nitrogenâ€doped Graphene Nanoribbon with Multiple Substitutional Sites. Angewandte Chemie, 0, , .	2.0	0