
Jordan L Schnell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4345630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing co-occurrence of fine particulate matter and ground-level ozone extremes in the western United States. Science Advances, 2022, 8, eabi9386.	10.3	29
2	Spatial Variation of Surface O ₃ Responses to Drought Over the Contiguous United States During Summertime: Role of Precursor Emissions and Ozone Chemistry. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
3	A storyline view of the projected role of remote drivers on summer air stagnation in Europe and the United States. Environmental Research Letters, 2022, 17, 014026.	5.2	5
4	Characterizing Changes in Eastern U.S. Pollution Events in a Warming World. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	8
5	Potential for Electric Vehicle Adoption to Mitigate Extreme Air Quality Events in China. Earth's Future, 2021, 9, e2020EF001788.	6.3	16
6	Health Benefits of Electrifying Chicago's Municipal Vehicle Fleet. Lancet Planetary Health, The, 2021, 5, S21.	11.4	0
7	Effect of adoption of electric vehicles on public health and air pollution in China: a modelling study. Lancet Planetary Health, The, 2021, 5, S8.	11.4	9
8	The COVID-19 lockdowns: a window into the Earth System. Nature Reviews Earth & Environment, 2020, 1, 470-481.	29.7	153
9	The GFDL Global Atmospheric Chemistryâ€Climate Model AM4.1: Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002032.	3.8	51
10	Public Health and Climate Benefits and Tradeâ€Offs of U.S. Vehicle Electrification. GeoHealth, 2020, 4, e2020GH000275.	4.0	34
11	Have improvements in ozone air quality reduced ozone uptake into plants?. Elementa, 2020, 8, .	3.2	11
12	The differing impact of air stagnation on summer ozone across Europe. Atmospheric Environment, 2019, 219, 117062.	4.1	29
13	Multiâ€Index Attribution of Extreme Winter Air Quality in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4567-4583.	3.3	16
14	Air quality impacts from the electrification of light-duty passenger vehicles in the United States. Atmospheric Environment, 2019, 208, 95-102.	4.1	48
15	Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nature Climate Change, 2018, 8, 166-171.	18.8	72
16	Exploring the relationship between surface PM _{2.5} and meteorology in Northern India. Atmospheric Chemistry and Physics, 2018, 18, 10157-10175.	4.9	50
17	Synthetic ozone deposition and stomatal uptake at flux tower sites. Biogeosciences, 2018, 15, 5395-5413.	3.3	22
18	Average versus high surface ozoneÂlevels over the continental USA: model bias, background influences, and interannual variability. Atmospheric Chemistry and Physics, 2018, 18, 12123-12140.	4.9	27

JORDAN L SCHNELL

#	Article	IF	CITATIONS
19	Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elementa, 2018, 6, .	3.2	177
20	Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2854-2859.	7.1	131
21	The seasonality and geographic dependence of ENSO impacts on U.S. surface ozone variability. Geophysical Research Letters, 2017, 44, 3420-3428.	4.0	21
22	Spatial clustering and meteorological drivers of summer ozone in Europe. Atmospheric Environment, 2017, 167, 496-510.	4.1	37
23	Regional responses of surface ozone in Europe to the location of high-latitude blocks and subtropical ridges. Atmospheric Chemistry and Physics, 2017, 17, 3111-3131.	4.9	28
24	Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the periodÂ1990–2015. Atmospheric Chemistry and Physics, 2017, 17, 2709-2720.	4.9	87
25	Synoptic and meteorological drivers of extreme ozone concentrations over Europe. Environmental Research Letters, 2016, 11, 024005.	5.2	116
26	Effect of climate change on surface ozone over North America, Europe, and East Asia. Geophysical Research Letters, 2016, 43, 3509-3518.	4.0	46
27	Use of North American and European air quality networks to evaluate global chemistry–climate modeling of surface ozone. Atmospheric Chemistry and Physics, 2015, 15, 10581-10596.	4.9	50
28	Skill in forecasting extreme ozone pollution episodes with a global atmospheric chemistry model. Atmospheric Chemistry and Physics, 2014, 14, 7721-7739.	4.9	46